各种常用排序的时间复杂度和稳定性以及代码实现



转载地址:http://blog.csdn.net/hr10707020217/article/details/10581371


怎么记忆稳定性

总过四大类排序:插入、选择、交换、归并(基数排序暂且不算)

比较高级一点的(时间复杂度低一点得)shell排序,堆排序,快速排序(除了归并排序)都是不稳定的,在加上低一级的选择排序是不稳定的。

比较低级一点的(时间复杂度高一点的)插入排序,               冒泡排序,归并排序,基数排序都是稳定的。

(4种不稳定,4种稳定)。

一、

对于直接插入排序:

public void insertSort(int[] unsorted) {
		for (int i = 1; i < unsorted.length; i++) {
			if (unsorted[i - 1] > unsorted[i]) {
				int temp = unsorted[i];
				int j = i;
				while (j > 0 && unsorted[j - 1] > temp) {
					unsorted[j] = unsorted[j - 1];
					j--;
				}
				unsorted[j] = temp;
			}
		}
	}


当最好的情况,如果原来本身就是有序的,比较次数为n-1次(分析(while (j >= 0 && temp < R[j]))这条语句),时间复杂度为O(n)。

当最坏的情况,原来为逆序,比较次数为2+3+...+n=(n+2)(n-1)/2次,而记录的移动次数为i+1(i=1,2...n)=(n+4)(n-1)/2次。

如果序列是随机的,根据概率相同的原则,平均比较和移动的次数为n^2/4.

二、

选择排序不关心表的初始次序,它的最坏情况的排序时间与其最佳情况没多少区别,其比较次数都为 n(n-1)/2,交换次数最好的时候为0,最差的时候为n-1,尽管和冒泡排序同为O(n),但简单选择排序性能上要优于冒泡排序。但选择排序可以   非常有效的移动元素。因此对次序近乎正确的表,选择排序可能比插入排序慢很多。

public void selectSort(int[] R,int n){
		int i, j, temp, index;  
	    for ( i = 0; i < n; ++i ) {  
	        index = i;  
	        for ( j = i + 1; j < n; ++j ) {  
	            if ( R[index] > R[j] ) {  
	                index = j;//index中存放关键码最小记录的下标  
	            }  
	        }  
	        if (index != i) {  
	            temp = R[i];  
	            R[i] = R[index];  
	            R[index] = temp;  
	        }  
	    }  
	}


三、

冒泡排序:

最好的情况,n-1次比较,移动次数为0,时间复杂度为O(n)。

最坏的情况,n(n-1)/2次比较,等数量级的移动,时间复杂度为O(O^2)

public void bubbleSort(int[] num){
		int nlen = num.length;
		for(int i=0;i<nlen-1;i++){
			for(int j=1;j<nlen-i;j++){
				if(num[j-1]>num[j]){
					int tmp = num[j-1];
					num[j-1] = num[j];
					num[j] = tmp;
				}
			}
		}
	}


四、

快速排序:

最好情况O(nlogn)

最坏情况O(n^2)

public void quickS(int[] num, int s, int end) {
		if (s < end) {
			int mid = qs(num, s, end);
			quickS(num, s, mid - 1);
			quickS(num, mid + 1, end);
		}
	}
	public int qs(int[] num, int s, int end) {
		int i = s;
		int j = end;
		int tmp = num[i];
		while (i < j) {
			while (i < j && num[j] > tmp)
				j--;
			if (i < j) {
				num[i] = num[j];
				i++;
			}
			while (i < j && num[i] < tmp)
				i++;
			if (i < j) {
				num[j] = num[i];
				j--;
			}
		}
		num[i] = tmp;
		return i;
	}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值