1) 函数实现交换两个int型变量的值,要求不定义任何中间变量。
C / C++ 版:
void Swap(int *a, int *b)
{
*a^=*b;
*b^=*a;
*a^=*b;
}
C++ 版:
void Swap(int &a, int &b)
{
a^=b;
b^=a;
a^=b;
}
分析一下:
(a ^ b = s) (b ^ s = a)
0 ^ 1 = 1 1 ^ 1 = 0
1 ^ 0 = 1 0 ^ 1 = 1
1 ^ 1 = 0 1 ^ 0 = 1
0 ^ 0 = 0 0 ^ 0 = 0
归结一下:1. 两个数相异或,相同的位清0,不同的位置1。 (所以才有了 XOR eax, eax ;eax清零)
2. s = (a ^ b); (b ^ s) == a ? Yes. 异或加密解密的基础.
2) 摘自《高效程序的奥秘》一书。英文书名<Hacker’s Delight>,译为《黑客的窃喜》
获得后缀0bit的个数。(从低位开始的连续的0bit,间接地求最低位的1bit的位置)
int ntz(unsigned x) { // Number of trailing zeros.
int n;
if (x == 0) return(32);
n = 1;
if ((x & 0x0000FFFF) == 0) {n = n +16; x = x >>16;}
if ((x & 0x000000FF) == 0) {n = n + 8; x = x >> 8;}
if ((x & 0x0000000F) == 0) {n = n + 4; x = x >> 4;}
if ((x & 0x00000003) == 0) {n = n + 2; x = x >> 2;}
return n - (x & 1);
}
3) 除了最低位的bit1,其余位全清0. <Hacker’s Delight>一书。
n = n & (-n) < - - - - > n = n & (~n + 1)
分析一下:
假设n(2) = X…X10…0。其中每个X代表bit值并不都是相同,0的个数≥0,¯X表示该位取反。
X & ¯X = 0, 1 & 0 = 0
则~n(2) = ¯X…¯X01…1。
~n + 1 = ¯X…¯X10…0。
n & (~n + 1) = 0…010…0
4) 清最低位的bit1,其他不变。
n = n & (n – 1);
则 n – 1 = X…X01…1
n & (n - 1) = X…X00…0
5) 获得bit1的个数。(统计)
我们常用的方法:
int Get1BitCount(unsigned int x)
{
int n = 0;
while (x > 0) {
if (x & 0x1) n++;
x >>= 1;
}
return n;
}
另一种更好的办法:
int Get1BitCount(unsigned int x)
{
int n = 0;
while (x > 0) {
n++;
x = x & (x - 1);
}
return n;
}
6) 求unsigned int型数一共有多少bit?(网上看到有人问)
int nCount = Get1BitCount((unsigned int)~0);
求别的数据类型的位数,要重载Get1BitCount(或者直接用temlate来实现)。
不过觉得像上面这样求法,太浪费了,不是吗?
int GetTotalBit(void)
{
unsigned int x = ~0;
int n = 0;
while (x > 0) {
n += 8;
x >>= 8;
}
return n;
}
7) 清除低位到高位的n个bit1。
while (--n > 0) {
x = x & (x - 1);
}
8) (以后有再慢慢更新)