5.平方差

# P9231 [蓝桥杯 2023 省 A] 平方差

## 题目描述

给定L,R,问 L R 中有多少个数x满足存在整数y,z 使得x=y^2-z^2。

## 输入格式

输入一行包含两个整数 L,R,用一个空格分隔。

## 输出格式

输出一行包含一个整数满足题目给定条件的x的数量。

## 输入输出样例 #1

### 输入 #1

```
1 5
```

### 输出 #1

```
4
```

## 说明/提示

#### 【样例说明】

* $1=1^2-0^2$
* $3=2^2-1^2$
* $4=2^2-0^2$
* $5=3^2-2^2$

#### 【评测用例规模与约定】

对于40% 的评测用例,L,R< 5000;

对于所有评测用例, L, R<10^9。

第十四届蓝桥杯大赛软件赛省赛 C/C++ 大学 A 组 C

#include<bits/stdc++.h>
using namespace std;
#define ll long long

ll ji(ll x)
{
	if(!x) return 0;
	else return (x+1)/2;
}
ll ou(ll x)
{
	if(!x) return 0;
	else return x/4;
}
int main()
{
	ll l,r;
	cin>>l>>r;
	ll c1,c2;
	c1=ji(l-1)+ou(l-1);
	c2=ji(r)+ou(r);
	cout<<c2-c1;
	
	return 0; 
}

 总结思考:

        题目要求的是找出一个区间中所有能表示为平方差 x=y2−z2 的整数。根据数学理论,任何可以表示为平方差的数可以分解成两个整数的差的平方,

        简单题,利用平方差公式,x=(y-z)(y+z)=a*b    a=y-z, b=y+z

        当x为奇数的时候,可以拆为a=1,b为任何数,所以在范围内,奇数都满足;

        当x为偶数的时候,可以拆为a=2,b为也是关于2的倍数,所以,是4的倍数;

        

        函数 ji(ll x): 该函数计算并返回值 (x+1)/2。它的作用是计算某个数 x 左侧的所有奇数的数量。比如x=2 返回1  奇数为1 个;x=3 返回2 奇数为2个;

        ou(ll x): 该函数计算并返回 x/4。它的作用是计算某个数 x左侧的所有能被4整除的整数的数量。

        

要计算l-r  范围内的,直接计算r左边所有的减去l-1左边的即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值