# P9231 [蓝桥杯 2023 省 A] 平方差
## 题目描述
给定L,R,问 L R 中有多少个数x满足存在整数y,z 使得x=y^2-z^2。
## 输入格式
输入一行包含两个整数 L,R,用一个空格分隔。
## 输出格式
输出一行包含一个整数满足题目给定条件的x的数量。
## 输入输出样例 #1
### 输入 #1
```
1 5
```### 输出 #1
```
4
```## 说明/提示
#### 【样例说明】
* $1=1^2-0^2$
* $3=2^2-1^2$
* $4=2^2-0^2$
* $5=3^2-2^2$#### 【评测用例规模与约定】
对于40% 的评测用例,L,R< 5000;
对于所有评测用例, L, R<10^9。
第十四届蓝桥杯大赛软件赛省赛 C/C++ 大学 A 组 C
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll ji(ll x)
{
if(!x) return 0;
else return (x+1)/2;
}
ll ou(ll x)
{
if(!x) return 0;
else return x/4;
}
int main()
{
ll l,r;
cin>>l>>r;
ll c1,c2;
c1=ji(l-1)+ou(l-1);
c2=ji(r)+ou(r);
cout<<c2-c1;
return 0;
}
总结思考:
题目要求的是找出一个区间中所有能表示为平方差 x=y2−z2 的整数。根据数学理论,任何可以表示为平方差的数可以分解成两个整数的差的平方,
简单题,利用平方差公式,x=(y-z)(y+z)=a*b a=y-z, b=y+z
当x为奇数的时候,可以拆为a=1,b为任何数,所以在范围内,奇数都满足;
当x为偶数的时候,可以拆为a=2,b为也是关于2的倍数,所以,是4的倍数;
函数
ji(ll x)
: 该函数计算并返回值 (x+1)/2。它的作用是计算某个数 x 左侧的所有奇数的数量。比如x=2 返回1 奇数为1 个;x=3 返回2 奇数为2个;
ou(ll x)
: 该函数计算并返回 x/4。它的作用是计算某个数 x左侧的所有能被4整除的整数的数量。
要计算l-r 范围内的,直接计算r左边所有的减去l-1左边的即可