自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 用户消费行为分析(七)

本文通过用户消费数据分析复购率与回购率。使用pivot表统计用户每月消费次数,定义复购用户(月消费>1次)和非复购用户(消费1次)。结果显示每月复购率稳定在40%左右,用户忠诚度较高。回购率分析显示用户连续两月消费情况,发现回购率呈上升趋势且高于复购率,表明1月新用户逐渐转化为忠实用户。可视化对比表明老用户忠诚度优于新用户,建议持续优化营销策略以提升用户留存。

2025-05-27 18:06:15 422

原创 用户消费行为分析(六)

该报告分析了用户消费行为数据,重点关注购买周期和生命周期两个维度。研究发现:1)用户平均购买间隔为12天,75%用户在15天内复购;2)48.3%用户仅消费一次,用户留存率有待提升;3)25%用户生命周期超过59天,是核心用户群体;4)生命周期分析呈现双峰分布,存在部分忠诚用户。建议针对不同用户群体采取差异化运营策略:对核心用户重点维护,对普通用户在消费后3天推送优惠券以提升复购率,并针对性开展营销活动改善用户留存。

2025-05-26 18:07:46 763

原创 用户消费行为分析(五)

本文介绍了用户活跃度分层分析方法。首先通过透视表统计用户每月消费频次,并使用0填充缺失值。然后定义了5种用户状态:未注册、新用户、活跃用户、不活跃用户和回流用户,通过编写状态判断函数进行分类。数据分析显示,不活跃用户占比最大,其次是新用户和活跃用户。可视化图表显示2月份活跃用户增长明显(可能受春节和情人节营销活动影响),但新用户持续下滑。回流用户占比在3-4月有所上升,可能与妇女节营销相关。建议加强节日营销力度以提高用户活跃度,同时关注市场竞争因素。

2025-05-24 15:51:09 491

原创 用户消费行为分析(四)

学习记录。

2025-05-22 21:56:21 449

原创 用户消费行为分析(三)

首购客户每日的客流量分析,从图可以看出,客流量从1月到4月末是呈下降趋势,可能是春节期间有促销活动,有折扣,吸引了客流量,所以1月份的客流量比较集中,其中在2月15号有出现客户流量增加,可能是情人节有促销活动,到情人节过后,新客流量慢慢趋于平缓,价格不再吸引客流量。可以从第三个图看出,每日的客流量是在80左右 ,结合图一与图二分析,可以大致了解,2015年1-4月份的数据,用户首次购买到最后一次购买,这4个月的用户忠诚度较高,用户的复购率还算良好。不区分新老用户区分,每日的客流量分析。

2025-05-22 14:32:52 321

原创 用户消费行为分析(二)

消费金额角度:消费金额的均值174.5、标准差355.6、中位数90,均值>中位数,大致推断,汇总后的数据偏右边分布,用户消费金额区间在100-190元之间,看75%分布值,才与均值相近,可以推断出,存在个别土豪。由图可以看出A类前10名用户,消费金额都在1500以上,可以针对此类价值高的用户加以维护,而B类与C类客户的整体的消费金额较低,趋向日用产品的购买。按照A类前80%,B类前95%,C类100%的销售金额 占比来看,顾客个数的分布均衡,可以看出A类客户存在消费价值高的客户。用户消费的贡献度分析。

2025-05-22 00:37:16 688

原创 用户消费行为分析(一)

图二消费金额在 2 月达到峰值,远超其他月份,随后在 3 月大幅下降,4 月有所回升但仍未达到 2 月水平,可能是处理春节期间和情人节,购买的商品价值较高的产品销售明显增加。图三趋势与产品购买数量类似,1 月次数较多,2 月和 3 月持续走低,3 月达到低谷,4 月回升。图四同样是 1 月人数较多,2 月和 3 月下降,3 月人数最少,4 月有所增加。图一1 月购买量处于高位,随后在 2 月和 3 月持续下滑,3 月达到最低点。数据预处理,将数据集中的销售日期的格式,改成日期格式。

2025-05-21 19:13:45 161

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除