地级市人口流动率(三种方法测算)面板数据(2013-2022年)

参照闫海洲(2010)、郭东杰(2016),方锦程(2023)等人的做法,利用常住人口、户籍人口、公路客运量等数据计算地级市人口流动率

计算方式:

人口流动率1 = 年末常住人口 / 户籍人口

人口流动率2= (年末常住人口- 户籍人口) / 户籍人口

人口流动率3= 公路客运量 / 年末常住人口

一、数据介绍

数据名称:地级市人口流动率测算

数据年份:2013-2022年

样本范围:290+地级市

样本数量:2960条

数据来源:各地方统计局

数据说明:含原始数据、线性插值、回归填补3个版本

二、参考文献

[1]方锦程,刘颖,高昊宇,等.公共数据开放能否促进区域协调发展?——来自政府数据平台上线的准自然实验[J].管理世界,2023,39(09):124-142.

[2]郭东杰,余冰心.计划生育、人口变迁与居民消费需求不足的实证研究[J].经济学家,2016,(08):29-37.

[3]闫海洲.长三角地区产业结构高级化及影响因素[J].财经科学,2010,(12):50-57.

三、指标说明

四、数据概览

 

【下载→

方式一(推荐):主页个人 简介
经管数据库-CSDN博客

方式二:数据下载地址汇总-CSDN博客

基于Python的人口流动数据分析是指使用Python编程语言进行处理和分析人口流动相关的数据。Python提供了丰富的数据处理和分析库,使得人口流动数据的获取、清洗、可视化和建模变得更加简单和高效。 在进行人口流动数据分析时,可以使用以下Python库: 1. Pandas:Pandas是一个强大的数据处理库,提供了高效的数据结构和数据分析工具。可以使用Pandas读取和处理人口流动数据,进行数据清洗、转换和聚合操作。 2. NumPy:NumPy是Python科学计算的基础库,提供了高性能的数值计算功能。可以使用NumPy进行数值计算、数组操作和统计分析。 3. Matplotlib和Seaborn:Matplotlib和Seaborn是用于数据可视化的库,可以绘制各种类型的图表,如折线图、柱状图、散点图等,用于展示人口流动数据的趋势和关联性。 4. Scikit-learn:Scikit-learn是一个机器学习库,提供了各种常用的机器学习算法和工具。可以使用Scikit-learn进行人口流动数据的建模和预测。 在进行人口流动数据分析时,可以按照以下步骤进行: 1. 数据获取:从各种来源获取人口流动相关的数据,如人口普查数据、移民数据人口迁徙数据等。 2. 数据清洗和预处理:使用Pandas进行数据清洗,包括处理缺失值、异常值和重复值,进行数据转换和格式化。 3. 数据探索和可视化:使用Matplotlib和Seaborn绘制各种图表,如地图、热力图、时间序列图等,探索人口流动的趋势和关联性。 4. 数据分析和建模:使用NumPy和Scikit-learn进行数据分析和建模,如聚类分析、回归分析、时间序列分析等,挖掘人口流动数据中的规律和趋势。 5. 结果解释和报告:对分析结果进行解释和总结,生成可视化报告或者撰写分析报告,向相关人员或者决策者提供有关人口流动的见解和建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值