全国各省、市、县医院可达性数据集

健康是维系人类生活的根本要素,而健康的公民则是推动经济发展和社会稳定的核心力量。目前,医疗保健可达性的研究普遍采用到达医院所需时间作为衡量指标,这一方法不仅直观易懂,而且便于进行大规模分析。这些数据集对于政府卫生部门至关重要,它们可以用来优化资源配置、识别服务短缺区域,并制定出针对性的策略。最终,这些措施将有助于提升中国公共卫生的整体成效,并有效缩小医疗保健服务的差距。中国医院可达性数据集,以驾驶旅行时间作为基准,包含各省市县到最近的医院及最近的一、二、三级医院的旅行时间。该数据集使用 OpenStreetMap数据和Contraction Hierarchies寻路算法计算了定居点与全国最近医院之间的旅行时间。根据旅行时间计算、WorldPop 数据和医疗设施容量,采用Ga2SFCA模型来评估全国医院的可达性。

数据来源

道路网络数据来源于OSM、人口数据来源于WorldPop、医疗机构数据来源于药智数据、医院地理坐标来源于百度地图,团队人工整理,全部内容真实有效。

数据范围

省、地级市、区县级

时间跨度

2020

数据格式

数据格式为Excel形式

数据指标

前往最近医院行驶时间

前往最近一级医院行驶时间

前往最近二级医院行驶时间

前往最近三级医院行驶时间

医院可达性基尼系数

数据展示

参考文献

[1]Ye, P., Ye, Z., Xia, J. et al. National-scale 1-km maps of hospital travel time and hospital accessibility in China. Sci Data 11, 1130 (2024).

【下载→

方式一(推荐):主页↓个人↓简介
经管数据库-CSDN博客

方式二:数据下载地址汇总-CSDN博客

# RoutingKit [![Build Status](https://travis-ci.org/RoutingKit/RoutingKit.svg?branch=master)](https://travis-ci.org/RoutingKit/RoutingKit) RoutingKit is a C++ library that provides advanced route planning functionality. It was developed at [KIT](https://www.kit.edu) in the [group of Prof. Dorothea Wagner](https://i11www.iti.kit.edu/). The most prominent component is an index-based data structure called (Customizable) Contraction Hierarchy, that allows to answer shortest path queries within milliseconds or even less on data sets of continental size while keeping the arc weights flexible. Such running times cannot be achieved without indices. One of the main design goals of RoutingKit is to make recent research results easily accessible to people developing route planning applications. A key element is an interface that is a good compromise between usability and running time performance. For example the following code snippet is enough to build and query a basic index given an [OSM](https://www.openstreetmap.org) PBF data export. ```cpp #include <routingkit/osm_simple.h> #include <routingkit/contraction_hierarchy.h> #include <routingkit/inverse_vector.h> #include <routingkit/timer.h> #include <routingkit/geo_position_to_node.h> #include <iostream> using namespace RoutingKit; using namespace std; int main(){ // Load a car routing graph from OpenStreetMap-based data auto graph = simple_load_osm_car_routing_graph_from_pbf("file.pbf"); auto tail = invert_inverse_vector(graph.first_out); // Build the shortest path index auto ch = ContractionHierarchy::build( graph.node_count(), tail, graph.head, graph.travel_time ); // Build the index to quickly map latitudes and longitudes GeoPositionToNode map_geo_position(graph.latitude, graph.longitude); // Besides the CH itself we need a query object. ContractionHierarchyQuery ch_query(ch); // Use the query object to answer queries from stdin to stdout float from_latitude, from_longitude, to_latitude, to
# CRP Open source C++ Implementation of Customizable Route Planning (CRP) by Delling et al. This project was part of a practical course at Karlsruhe Institute of Technology (KIT). Requirements ============ In order to build CRP you need to have the following software installed: - Boost C++ Library (http://www.boost.org), more specifically Boost Iostreams. - Scons (http://scons.org) - g++ >= 4.8 (https://gcc.gnu.org) Building CRP ============ If the Boost Library is not in your PATH, make sure to edit the *SConstruct* file in the root directory to point the build script to the correct location of Boost. There is a section *Libraries* in the *SConstruct* file where you can specify the paths. Once you have installed all the software packages listed above, you can build the CRP programs by typing ``` scons --target=CRP --optimize=Opt -jX ``` into your terminal where `X` is the number of cores you want to use for building the project. If you want to use a specific g++ compiler version you can add `--compiler=g++-Version`. We also support a debug and profiling build that you can call with `--optimize=Dbg` and `--optimize=Pro` respectively. This command will build three programs in the folder *deploy*: - *osmparser*: Used to parse an OpenStreetMap (OSM) bz2-compressed map file. Call it with `./deploy/osmparser path_to_osm.bz2 path_to_output.graph.bz2` - *precalculation*: Used to build an overlay graph based on a given partition. Call it with `./deploy/precalculation path_to_graph path_to_mlp output_directory`. Here, *path_to_mlp* is the path to a *MultiLevelPartition* file for the graph that you need to provide. For more details, take a look into our project documentation. - *customization*: Used to precompute the metric weights for the overlay graph. Call it with `./deploy/customization path_to_graph path_to_overlay_graph metric_output_directory metric_type`. We currently support the following metric types: *hop* (number of edges traversed), *time* and *dist*.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值