七、集成运放性能指标对运算误差的影响
在上述各电路运算关系的分析中,均认为集成运放为理想运放。而实际上,当利用运放构成运算电路时,由于开环差模增益
A
o
d
A_{od}
Aod、差模输入电阻
r
i
d
r_{id}
rid 和共模抑制比
K
C
M
R
K_{CMR}
KCMR 为有限值,且输入失调电压
U
I
O
U_{IO}
UIO、失调电流
I
I
O
I_{IO}
IIO 以及它们的温漂
d
U
I
O
d
T
\displaystyle\frac{\textrm dU_{IO}}{\textrm dT}
dTdUIO、
d
I
I
O
d
T
\displaystyle\frac{\textrm dI_{IO}}{\textrm dT}
dTdIIO 均不为零,必然造成误差。
对于任何运算电路,若元器件参数理想情况下输出电压为
u
O
′
u'_O
uO′,电路的实际输出电压为
u
O
u_O
uO,则输出电压的绝对误差
Δ
u
O
=
∣
u
O
∣
−
∣
u
O
′
∣
\Delta u_O=|u_O|-|u'_O|
ΔuO=∣uO∣−∣uO′∣,而相对误差为
δ
=
Δ
u
O
u
O
′
×
100
%
(
7.1.28
)
\delta=\frac{\Delta u_O}{u'_O}\times100\%\kern 40pt(7.1.28)
δ=uO′ΔuO×100%(7.1.28)
1、 A o d A_{od} Aod 和 r i d r_{id} rid 为有限值时,对反相比例运算电路运算误差的影响
考虑
A
o
d
A_{od}
Aod 和
r
i
d
r_{id}
rid 为有限值时,反相比例运算电路的等效电路如图7.1.31所示。由于
r
i
d
>
>
R
′
r_{id}>>R'
rid>>R′,可以认为
u
N
≈
−
u
I
d
=
−
u
O
A
o
d
(
7.1.29
)
u_N\approx-u_{Id}=-\frac{u_O}{A_{od}}\kern 40pt(7.1.29)
uN≈−uId=−AoduO(7.1.29)结点
N
\textrm N
N 的电流方程为
i
R
=
i
F
+
i
I
i_R=i_F+i_I
iR=iF+iI,即
u
I
−
u
N
R
=
u
N
−
u
O
R
f
+
u
N
r
i
d
+
R
′
\frac{u_I-u_N}{R}=\frac{u_N-u_O}{R_f}+\frac{u_N}{r_{id}+R'}
RuI−uN=RfuN−uO+rid+R′uN将式(7.1.29)代入上式,并令
R
N
=
R
/
/
R
f
/
/
(
r
i
d
+
R
′
)
R_N=R//R_f//(r_{id}+R')
RN=R//Rf//(rid+R′),整理可得
u
O
≈
−
R
f
R
⋅
A
o
d
R
N
R
f
+
A
o
d
R
N
⋅
u
I
(
7.1.30
)
u_O\approx-\frac{R_f}{R}\cdot\frac{A_{od}R_N}{R_f+A_{od}R_N}\cdot u_I\kern 30pt(7.1.30)
uO≈−RRf⋅Rf+AodRNAodRN⋅uI(7.1.30)理想运放时的输出电压
u
O
′
=
−
R
f
R
⋅
u
I
(
7.1.31
)
u'_O=-\frac{R_f}{R}\cdot u_I\kern 80pt(7.1.31)
uO′=−RRf⋅uI(7.1.31)故相对误差
δ
≈
−
R
f
R
f
+
A
o
d
R
N
×
100
%
(
7.1.32
)
\delta\approx-\frac{R_f}{R_f+A_{od}R_N}\times100\%\kern 30pt(7.1.32)
δ≈−Rf+AodRNRf×100%(7.1.32)若
R
=
10
k
Ω
R=10\,\textrm kΩ
R=10kΩ,
R
f
=
100
k
Ω
R_f=100\,\textrm kΩ
Rf=100kΩ,
R
′
=
R
/
/
R
f
R'=R//R_f
R′=R//Rf,
A
o
d
=
2
×
1
0
5
A_{od}=2\times10^5
Aod=2×105,
r
i
d
=
2
M
Ω
r_{id}=2\,\textrm MΩ
rid=2MΩ,则
δ
≈
−
0.005
%
\delta\approx-0.005\%
δ≈−0.005%。式(7.1.32)表明,
A
o
d
A_{od}
Aod 和
r
i
d
r_{id}
rid 愈大,相对误差的数值愈小。
2、 A o d A_{od} Aod 和 K C M R K_{CMR} KCMR 为有限值时,对同相比例运算电路运算误差的影响
因为同相比例运算电路在输入差模信号的同时伴随着共模信号输入,因此共模抑制比称为影响运算误差的重要因素。图7.1.32所示为
A
o
d
A_{od}
Aod 和
K
C
M
R
K_{CMR}
KCMR 为有限值时同相比例运算电路的等效电路。由于
r
i
d
r_{id}
rid 为无穷大,
i
I
=
0
i_I=0
iI=0,故
R
′
R'
R′ 上电压为零,
u
P
=
u
I
u_P=u_I
uP=uI。输出电压是差模信号和共模信号两部分作用的结果,其中
u
I
d
=
u
P
−
u
N
u_{Id}=u_P-u_N
uId=uP−uN
u
I
c
=
u
P
+
u
N
2
u_{Ic}=\frac{u_P+u_N}{2}
uIc=2uP+uN输出电压的表达式为
u
O
=
A
o
d
(
u
P
−
u
N
)
+
A
c
⋅
u
P
−
u
N
2
(
7.1.33
)
u_O=A_{od}(u_P-u_N)+A_c\cdot \frac{u_P-u_N}{2}\kern 30pt(7.1.33)
uO=Aod(uP−uN)+Ac⋅2uP−uN(7.1.33)因为
u
P
=
u
I
u_P=u_I
uP=uI,
u
N
=
R
R
+
R
f
⋅
u
O
=
F
u
O
u_N=\displaystyle\frac{R}{R+R_f}\cdot u_O=Fu_O
uN=R+RfR⋅uO=FuO,
A
c
=
A
o
d
K
C
M
R
A_c=\displaystyle\frac{A_{od}}{K_{CMR}}
Ac=KCMRAod,所以
u
O
=
A
o
d
u
I
−
A
o
d
F
u
O
+
A
o
d
K
C
M
R
⋅
u
I
2
+
A
o
d
K
C
M
R
⋅
F
u
O
2
u_O=A_{od}u_I-A_{od}Fu_O+\frac{A_{od}}{K_{CMR}}\cdot\frac{u_I}{2}+\frac{A_{od}}{K_{CMR}}\cdot\frac{Fu_O}{2}
uO=AoduI−AodFuO+KCMRAod⋅2uI+KCMRAod⋅2FuO整理可得
u
O
=
(
1
+
R
f
R
)
⋅
1
+
1
2
K
C
M
R
1
+
1
A
o
d
F
−
1
2
K
C
M
R
⋅
u
I
(
7.1.34
)
u_O=\Big(1+\frac{R_f}{R}\Big)\cdot\frac{1+\displaystyle\frac{1}{2K_{CMR}}}{1+\displaystyle\frac{1}{A_{od}F}-\frac{1}{2K_{CMR}}}\cdot u_I\kern 20pt(7.1.34)
uO=(1+RRf)⋅1+AodF1−2KCMR11+2KCMR1⋅uI(7.1.34)理想运放情况下的输出电压
u
O
′
=
(
1
+
R
f
R
)
u
I
(
7.1.35
)
u'_O=\big(1+\frac{R_f}{R}\big)u_I\kern 60pt(7.1.35)
uO′=(1+RRf)uI(7.1.35)所以相对误差
δ
=
(
1
+
1
2
K
C
M
R
1
+
1
A
o
d
F
−
1
2
K
C
M
R
−
1
)
×
100
%
(
7.1.36
)
\delta=\Big(\frac{1+\displaystyle\frac{1}{2K_{CMR}}}{1+\displaystyle\frac{1}{A_{od}F}-\frac{1}{2K_{CMR}}}-1\Big)\times100\%\kern 20pt(7.1.36)
δ=(1+AodF1−2KCMR11+2KCMR1−1)×100%(7.1.36)若
R
=
10
k
Ω
R=10\,\textrm kΩ
R=10kΩ,
R
f
=
100
k
Ω
R_f=100\,\textrm kΩ
Rf=100kΩ,
R
′
=
R
/
/
R
f
R'=R//R_f
R′=R//Rf,
A
o
d
=
2
×
1
0
5
A_{od}=2\times10^5
Aod=2×105,
K
C
M
R
=
1
0
4
K_{CMR}=10^4
KCMR=104,则
δ
≈
0.01
%
\delta\approx0.01\%
δ≈0.01%。式(7.1.36)表明,
A
o
d
A_{od}
Aod 和
K
C
M
R
K_{CMR}
KCMR 愈大,相对误差的数值愈小。
3、失调电压 U I O U_{IO} UIO、失调电流 I I O I_{IO} IIO 及其温漂 d U I O d T \displaystyle\frac{\textrm dU_{IO}}{\textrm dT} dTdUIO、 d I I O d T \displaystyle\frac{\textrm dI_{IO}}{\textrm dT} dTdIIO 对比例运算电路运算误差的影响
考虑 U I O U_{IO} UIO 和 I I O I_{IO} IIO 的影响,比例运算电路的等效电路如图7.1.33所示。图中 I B 1 = I I B + 1 2 ⋅ I I O I_{B1}=I_{IB}+\displaystyle\frac{1}{2}\cdot I_{IO} IB1=IIB+21⋅IIO, I B 2 = I I B − 1 2 ⋅ I I O I_{B2}=I_{IB}-\displaystyle\frac{1}{2}\cdot I_{IO} IB2=IIB−21⋅IIO,差模输入电压为零。因电路的两个输入端接地,故仅由失调因素产生输出电压 u O u_O uO。
图
7.1.33
考虑
U
I
O
和
I
I
O
影响时,比例运算电路的等效电路
图7.1.33\,\,\,考虑\,U_{IO}\,和\,I_{IO}\,影响时,比例运算电路的等效电路
图7.1.33考虑UIO和IIO影响时,比例运算电路的等效电路集成运放同相输入端电位
u
P
=
−
(
I
I
B
−
1
2
⋅
I
I
O
)
R
′
(
7.1.37
)
u_P=-\big(I_{IB}-\frac{1}{2}\cdot I_{IO}\big)R'\kern 40pt(7.1.37)
uP=−(IIB−21⋅IIO)R′(7.1.37)由于
U
I
d
=
0
U_{Id}=0
UId=0,所以两个电流源上的压降相等,故反相输入端电位
u
N
=
U
I
O
−
(
I
I
B
−
1
2
⋅
I
I
O
)
R
′
(
7.1.38
)
u_N=U_{IO}-\big(I_{IB}-\frac{1}{2}\cdot I_{IO}\big)R'\kern 22pt(7.1.38)
uN=UIO−(IIB−21⋅IIO)R′(7.1.38)
N
\textrm N
N 点的电流方程
u
N
R
+
I
I
B
+
1
2
I
I
O
=
u
O
−
u
N
R
f
\frac{u_N}{R}+I_{IB}+\frac{1}{2}I_{IO}=\frac{u_O-u_N}{R_f}
RuN+IIB+21IIO=RfuO−uN整理得出
u
N
=
R
N
R
f
u
O
−
(
I
I
B
+
1
2
I
I
O
)
R
N
(
7.1.39
)
u_N=\frac{R_N}{R_f}u_O-\big(I_{IB}+\frac{1}{2}I_{IO}\big)R_N\kern 20pt(7.1.39)
uN=RfRNuO−(IIB+21IIO)RN(7.1.39)式中
R
N
=
R
/
/
R
f
R_N=R//R_f
RN=R//Rf。根据式(7.1.38)和(7.1.39),可得输出电压
u
O
=
(
1
+
R
f
R
)
[
U
I
O
+
I
I
B
(
R
N
−
R
′
)
+
1
2
I
I
O
(
R
N
+
R
′
)
]
u_O=\big(1+\frac{R_f}{R}\big)[U_{IO}+I_{IB}(R_N-R')+\frac{1}{2}I_{IO}(R_N+R')]
uO=(1+RRf)[UIO+IIB(RN−R′)+21IIO(RN+R′)]当外接电阻
R
/
/
R
f
=
R
′
R//R_f=R'
R//Rf=R′ 时,
u
O
=
(
1
+
R
f
R
)
(
U
I
O
+
I
I
O
R
′
)
(
7.1.40
)
u_O=\big(1+\frac{R_f}{R}\big)(U_{IO}+I_{IO}R')\kern 35pt(7.1.40)
uO=(1+RRf)(UIO+IIOR′)(7.1.40)当
R
N
=
R
′
R_N=R'
RN=R′ 且只考虑失调温漂所产生的输出电压的变化时,有
Δ
u
O
=
(
1
+
R
f
R
)
(
Δ
U
I
O
+
Δ
I
I
O
R
′
)
\Delta u_O=\big(1+\frac{R_f}{R}\big)(\Delta U_{IO}+\Delta I_{IO}R')
ΔuO=(1+RRf)(ΔUIO+ΔIIOR′)
Δ
U
I
O
=
d
U
I
O
d
T
⋅
Δ
T
m
a
x
\Delta U_{IO}=\frac{\textrm dU_{IO}}{\textrm dT}\cdot\Delta T_{max}
ΔUIO=dTdUIO⋅ΔTmax
Δ
I
I
O
=
d
I
I
O
d
T
⋅
Δ
T
m
a
x
\Delta I_{IO}=\frac{\textrm dI_{IO}}{\textrm dT}\cdot \Delta T_{max}
ΔIIO=dTdIIO⋅ΔTmax式中
Δ
T
m
a
x
\Delta T_{max}
ΔTmax 为温度变化的最大范围。
因为理想运放条件下,同相比例运算电路的输出电压
u
O
′
=
(
1
+
R
f
R
)
u
I
u'_O=\big(1+\frac{R_f}{R}\big)u_I
uO′=(1+RRf)uI所以失调温漂引起的相对误差的数值为
∣
δ
∣
=
∣
Δ
u
O
u
O
′
∣
=
∣
Δ
U
I
O
+
Δ
I
I
O
R
′
u
I
∣
×
100
%
(
7.1.41
)
|\delta|=\Big|\frac{\Delta u_O}{u'_O}\Big|=\Big|\frac{\Delta U_{IO}+\Delta I_{IO}R'}{u_I}\Big|\times 100\%\kern 20pt(7.1.41)
∣δ∣=
uO′ΔuO
=
uIΔUIO+ΔIIOR′
×100%(7.1.41)因为理想运放条件下,反相比例运算电路的输出电压
u
O
′
=
−
R
f
R
⋅
u
I
u'_O=-\frac{R_f}{R}\cdot u_I
uO′=−RRf⋅uI所以失调温漂引起的相对误差的数值为
∣
δ
∣
=
∣
Δ
u
O
u
O
′
∣
=
(
1
+
R
R
f
)
∣
Δ
U
I
O
+
Δ
I
I
O
R
′
u
I
∣
×
100
%
(
7.1.42
)
|\delta|=\Big|\frac{\Delta u_O}{u'_O}\Big|=\Big(1+\frac{R}{R_f}\Big)\Big|\frac{\Delta U_{IO}+\Delta I_{IO}R'}{u_I}\Big|\times100\%\kern 15pt(7.1.42)
∣δ∣=
uO′ΔuO
=(1+RfR)
uIΔUIO+ΔIIOR′
×100%(7.1.42)式(7.1.41)和式(7.1.42)表明,在集成运放同相输入端和反相输入端外接总电阻相同的情况下,失调温漂愈小,输入电压幅值愈大,相对误差的数值愈小。
4、失调温漂对积分运算电路运算误差的影响
考虑 U I O U_{IO} UIO 和 I I O I_{IO} IIO 的影响,积分运算电路的等效电路如图7.1.34所示。当输入电压为零时,输出电压仅决定于失调因素。
因为
u
P
=
0
V
u_P=0\,\textrm V
uP=0V,集成运放差模输入电阻为无穷大,电流源
I
I
O
I_{IO}
IIO 上的电压可忽略不计,所以
u
N
=
U
I
O
u_N=U_{IO}
uN=UIO。
N
\textrm N
N 点的电流方程为
U
I
O
R
+
I
I
O
=
i
C
\frac{U_{IO}}{R}+I_{IO}=i_C
RUIO+IIO=iC输出电压
u
O
=
−
1
C
∫
(
U
I
O
R
+
I
I
O
)
d
t
(
7.1.43
)
u_O=-\frac{1}{C}\int\Big(\frac{U_{IO}}{R}+I_{IO}\Big)\textrm dt\kern 30pt(7.1.43)
uO=−C1∫(RUIO+IIO)dt(7.1.43)若仅考虑失调温漂,则输出电压的变化量
Δ
u
O
=
−
1
C
∫
(
Δ
U
I
O
R
+
Δ
I
I
O
)
d
t
(
7.1.44
)
\Delta u_O=-\frac{1}{C}\int\Big(\frac{\Delta U_{IO}}{R}+\Delta I_{IO}\Big)\textrm dt\kern 25pt(7.1.44)
ΔuO=−C1∫(RΔUIO+ΔIIO)dt(7.1.44)因为在理想运放情况下的输出电压为
u
O
′
=
−
1
C
∫
u
I
R
d
t
(
7.1.45
)
u'_O=-\frac{1}{C}\int\frac{u_I}{R}\textrm dt\kern 50pt(7.1.45)
uO′=−C1∫RuIdt(7.1.45)所以因失调温漂所引起的相对误差的数值为
∣
δ
∣
=
∣
Δ
u
O
u
O
′
∣
=
∣
∫
(
Δ
U
I
O
+
Δ
I
I
O
R
)
d
t
∫
u
I
d
t
∣
×
100
%
(
7.1.46
)
|\delta|=\Big|\frac{\Delta u_O}{u'_O}\Big|=\Big|\frac{\int(\Delta U_{IO}+\Delta I_{IO}R)\textrm dt}{\int u_I \textrm dt}\Big|\times100\%\kern 20pt(7.1.46)
∣δ∣=
uO′ΔuO
=
∫uIdt∫(ΔUIO+ΔIIOR)dt
×100%(7.1.46)可见,失调温漂愈大,
R
R
R 愈大,
u
I
u_I
uI 愈小,相对误差愈大。
应当指出,运算电路的运算误差不仅来源于集成运放非理想的指标参数,还决定于其它元器件的精度及电源电压的稳定性等。因此,为了提高运算精度,除了应选择高质量的集成运放外,还应合理选择其它元器件,提高电源电压的稳定性,减小环境温度的变化,抑制干扰和噪声,精心设计电路板等。