Tesla IT软开岗面试凉经

本文详述了一位应聘者在Tesla面试中的经历,涵盖了一面、二面和三面的各个环节。面试涉及算法设计、数据结构、SQL、网络、Docker、工程实践等多个技术领域,同时讨论了语言异同、未来职业期望及英语能力。面试官不仅关注技术深度,也注重实际问题解决和沟通能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tesla面试

一面:

随便问了问项目:算法的大致原理,怎么输入输出,调参依据是啥;HTTP连接是无状态的,那怎么维护用户和服务器连接的安全性
高考分数怎么排序(答:mapreduce的思想,单节点外存归并排序,多节点按序合并)
SQL水题:存储每个学生每个课程考试分数,怎么设计表,怎么算平均分
算法题:一个奖品的list,随机返回/按一定概率返回里面的某个奖品(随机数+概率前缀和预处理)
数据结构:无向图高效存储,无向图连通分量判断, 有向图有环无环判断
反问:业务,技术栈是什么,面试官是搞财务和信贷系统的,主要是C#和Java

二面:

自我介绍
问了问学过哪些课程
问了项目,也是传统的问题,做了啥,取得了什么效果,有什么应用场景等等
对于模型和训练结果进行版本管理,有什么办法(张口就来:按照版本和参数改动情况建立一个树状管理结构,反正就是乱嘴,看面试官在一直点头,但没什么表情,不知道内心活动)
对数据集的收集和管理方面有没有什么系统设计的思路(我也忘了我说了啥。。
数据结构:栈的应用场景,bfs和dfs的主要区别
什么是子网掩码
反向代理,我说我没怎么接触过,但是知道代理,然后讲了一些,他笑着说其实已经讲到反向代理了,还给我大致讲了讲。。我就唯唯诺诺
Docker相关的问题,比如为什么要使用docker,有什么优势,dockerfile大致怎么写等等。后来还问有没有用过k8s,我说我没用过,只知道它是集群管理的,k8s就没接着问
为什么选择来搞工程,那之前学的那些是不是用不上了(主要答了两点:1.以后会和算法的人对接,那我能懂别人在说什么 2.各种深度学习框架的优化方式体现了很多工程经验)
问我平时看什么博客和书吗,我:《数据密集型应用系统设计》,介绍一下印象深的地方,我就嘴了嘴Avro编码模式
反问环节(故弄玄虚:问面试官的部门主要做啥,有什么困难,用什么办法客服——还真让他给我讲了六七分钟)

三面

还是问项目,详细解释了一些做过的东西
对于以前用过的语言,觉得它们有什么异同和优劣
对未来有什么期望,希望在特斯拉有什么收获
英语问答:在过去的项目中遇到过什么挑战,有什么爱好
中文反问

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值