基于颜色特征的图像识别

该博客探讨了在背景黑色、物体形态变化的情况下,如何利用颜色特征进行图像识别。作者通过尝试发现,HSV颜色模型中的S分量更能反映颜色的醒目程度,从而提高识别准确性。HSV模型优于RGB,因为它能更好地模拟人类对颜色的感知,且减少光照影响。不同平台(如OpenCV、Android、Python/PIL)中HSV的取值范围有所差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  要做一个背景黑色,物体形态可变(比如项链,两次放置的形状肯定不一样)的图像识别。很直接的想法就是,提取图片中的主要颜色,计算有多少像素在这个颜色范围内,把像素个数作为识别的特征。

  从网上找到了一段代码:

import colorsys  
   
def get_dominant_color(image):  
       
    image = image.convert('RGBA')  
      
    #生成缩略图,减少计算量 
    image.thumbnail((200, 200))  
      
    max_score = 0 
    dominant_color = 0
      
    for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):  
        # 跳过纯黑色  
        if a == 0:  
            continue  
          
        saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]  
         
        y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) >> 13, 235)  
         
        y = (y - 16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值