轴对称图形的确给这个6年级的蒟蒻造成了心理阴影。
这里大概分成2种情况:
无论是什么情况,要根据垂线段最短和对称轴求解。
当然还有一个重要的理论:一个直角三角形中,如果斜边是一个直角边的2倍,那么这个直角边对应的角一定为30°。
怎么证明?其实很容易,只要找来一个90°,60°,30°的三角尺就可以知晓了。
NO.1
第一种用几个字概括:已知对称轴。
给两个动点,给一条角平分线,其中一个动点在角平分线上。
这个时候,不要动平分线上的动点,以角平分线为对称轴,做他的平分点,根据垂线段最短的定理,做一条线段,3点在一条线段才是最短的距离,正是一条底上对应的高。
大概如上述图片。
NO.2
第二种用简洁些的语言概括就是未知对称轴。
在这种题型里,大多都是三角形周长最小,注意周长有三条边,通过动点所在的线,设为对称轴,做已知定点的对称点,一定别忘是2个点,周长!周长!
还有将军饮马问题,给一条无限延长的直线l以及与他平行的直线l2,两侧各有一定点A,B,l上有一动点m,l2上有一动点n,m,n必须在一条线段上,这条线段必须与l,l2垂直。
对于这种问题,将AM平移至N点,形成A1N // AM,变成了平行四边形,此题只是求A1N+NB的长度了,两点之间,线段最短,连接A1和B,在l2上取交点,就是N的位置,根据这个再去找M的位置即可。
这里如图所示,在直线l上有线段MN,长度为1cm,现有两点AB,问如何移动位置才能使AM+MN+NB的长度最短。
MN的长度为定值,我们不必管他,将题目简化为求AM+NB的长度最短。
两点在同侧,无法直接运用两点之间线段最短求解,那就根据l为对称轴,做A的对称点A1,这样就是一个标准将军饮马问题了, 我们令NB平移至M点,得到B1M // NB,问题简化为求A1M+B1M的最短路径问题了,这是使用定理的绝佳时期,直接两点之间,线段最短,将A1与B1相连接,A1B1线段与直线l的交点便是M1,M1向后移1cm便可。
此类题目是将军饮马问题的进阶,通过对称求解。
补充一个知识点:在直角三角形中,斜边上中线的长度是斜边长度的一半。
如有初二大佬耳提面命,吾将洗耳恭听。