作者简介:
高科,先后在 IBM PlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。
并且深耕深度学习和数据集训练,提供商业化的视觉人工智能检测和预警系统(煤矿,工厂,制造业,消防等领域的工业化产品),合作开发商业性游戏
(谢谢你的关注)
=====================================================================
目录
目前最全的新能源汽车充电口识别,可识别特斯拉,ccs1,ccs2,ChadeMo,Type1,Type2等多种类型插口,支持YOLO,COCO,VOC三种标记,精确到91.1%
数据集介绍:
新能源汽车充电口识别数据集是一个包含各种新能源汽车充电口图像和相应标签的数据集。每个图像都经过标注,标识出了充电口的位置和类型。该数据集可以用于训练和测试充电口识别算法和模型。
使用场景:
- 充电站管理:使用充电口识别算法可以帮助充电站管理人员快速了解每个充电桩的充电口类型和数量,以便更好地安排维护和充电服务。
- 新能源汽车导航:充电口识别算法可以帮助导航系统在规划行驶路线时考虑充电站的充电口类型和可用性,提供更准确的路线选择。
- 用户充电体验改善:一些新能源汽车充电口可能需要特定的充电设备才能进行充电,充电口识别算法可以帮助用户在选择充电站时快速找到适合自己车辆的充电口,提高充电效率和体验。
数据集一共3348图像
预处理
增强
在机器学习和深度学习中,常常会将数据集分为训练集(train set)、测试集(test set)和验证集(validation set)三部分。
训练集(train set)是用于模型的训练的数据集。在训练过程中,模型通过学习训练集中的样本来调整自己的参数,以使其能够更好地对未知数据进行预测。训练集通常是最大的数据集,因为越多的数据可以提供更多的信息和更好的训练效果。
测试集(test set)是用于评估模型的泛化能力的数据集。在模型训练完成后,使用测试集中的样本来评估模型的性能,判断模型在未知数据上的表现。测试集应该是独立于训练集的,以确保对模型进行正确的评估和比较。
验证集(validation set)用于调整模型的超参数,如学习率、正则化参数等。在训练过程中,通过在验证集上评估模型的性能,可以选择最优的超参数组合,从而改善模型的泛化能力。与测试集一样,验证集也应该是独立于训练集的,以确保调整的超参数不会对模型的性能造成过拟合。
特斯拉(Model S)
ccs1
ccs2
ChadeMo
Type2
Type1
前景
随着新能源汽车的普及和充电基础设施的建设,充电口识别的需求将逐渐增加。新能源汽车充电口识别数据集可以为相关研究提供基础数据,有助于开发更准确和可靠的充电口识别算法和模型。将来,充电口识别技术有望在充电设施管理、导航系统、用户充电体验等领域发挥重要作用,为新能源汽车的普及和发展提供支持。
数据集下载:
yolov11:https://download.csdn.net/download/pbymw8iwm/90075557
yolov9: https://download.csdn.net/download/pbymw8iwm/90075559
yolov8:https://download.csdn.net/download/pbymw8iwm/90075558
yolov5: https://download.csdn.net/download/pbymw8iwm/90075547