作者简介:
高科,先后在 IBM PlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。
并且深耕深度学习和数据集训练,提供商业化的视觉人工智能检测和预警系统(煤矿,工厂,制造业,消防等领域的工业化产品),合作开发商业性游戏
(谢谢你的关注)
=====================================================================
数据集介绍
医院跌倒检测识别数据集是一个用于训练和测试机器学习模型的数据集,旨在识别医院环境中发生的跌倒事件。该数据集通常包含以下内容:
1. 视频数据:数据集中通常包含多个视频文件,这些视频记录了在医院环境中发生的跌倒事件。视频可以是医院监控摄像头捕捉到的实时录像,也可以是事先安排的跌倒事件模拟。
2. 标签信息:每个视频通常都配有对应的标签信息,用于指示该视频中是否发生了跌倒事件。标签可以是二进制的(跌倒/非跌倒),也可以是多类别的(例如,跌倒、摔倒、滑倒等)。
3. 视频特征:数据集中可能还包含提取的视频特征,用于训练和测试机器学习模型。这些特征可以是手动提取的,例如颜色直方图、光流等,也可以是从视频帧中自动提取的,例如卷积神经网络的特征。
4. 数据划分:数据集通常会按照一定的比例划分为训练集、验证集和测试集,以便在模型训练、调优和评估过程中使用。
医院跌倒检测识别数据集的目的是为研究和开发跌倒事件识别相关的机器学习算法和模型提供数据支持,以提高医院环境中的安全性和监控能力。
医院跌倒检测识别 使用YOLO,COCO ,VOC格式对4806张原始图片进行标注,可识别病人跌倒,病人的危险行为,病床等场景,预测准确率可达96.7%
数据集分割
4806总图像数
预处理
增强
在机器学习和深度学习中,常常会将数据集分为训练集(train set)、测试集(test set)和验证集(validation set)三部分。
训练集(train set)是用于模型的训练的数据集。在训练过程中,模型通过学习训练集中的样本来调整自己的参数,以使其能够更好地对未知数据进行预测。训练集通常是最大的数据集,因为越多的数据可以提供更多的信息和更好的训练效果。
测试集(test set)是用于评估模型的泛化能力的数据集。在模型训练完成后,使用测试集中的样本来评估模型的性能,判断模型在未知数据上的表现。测试集应该是独立于训练集的,以确保对模型进行正确的评估和比较。
验证集(validation set)用于调整模型的超参数,如学习率、正则化参数等。在训练过程中,通过在验证集上评估模型的性能,可以选择最优的超参数组合,从而改善模型的泛化能力。与测试集一样,验证集也应该是独立于训练集的,以确保调整的超参数不会对模型的性能造成过拟合。
病床(bed)
病人(patient)
病人和危险行为(danger)
病人摔倒(fall):
使用场景:
医院跌倒检测识别数据集可应用于以下场景和前景:
使用场景:
1. 医院安全监控:数据集可用于开发跌倒检测系统,实时监测医院环境中的跌倒事件,及时发出警报并采取相应措施,提高患者的安全性。
2. 高龄化社会:随着人口老龄化的加剧,老人跌倒已成为一个严重的社会问题。数据集可应用于在老年护理机构、养老院等场所实现跌倒事件的自动识别和报警,提供即时的救援和护理。
3. 科学研究:医院跌倒检测识别数据集可用于研究跌倒事件的发生机理和行为特征,深入了解跌倒事件的影响因素,并通过机器学习模型和算法进行预测和干预。
前景:
1. 提高医院安全性:利用医院跌倒检测识别数据集,可以开发出更准确、可靠的跌倒检测系统,提高医院环境的安全性,降低跌倒事件的发生率和严重程度。
2. 智能监控系统:通过利用该数据集训练的模型,可以开发智能监控系统,实现对医院环境中跌倒事件的实时监测和警报,提高对患者的关爱和护理质量。
3. 预防措施和干预:借助数据集提供的信息,可以研究跌倒事件的相关因素,开展针对性的预防措施和干预,降低跌倒风险,提高患者的生活质量和健康状况。
4. 学术研究和创新:医院跌倒检测识别数据集为学术界和研究机构提供了丰富的资源,可以用于深入研究跌倒事件的检测、预测和干预方法,推动该领域的学术创新和技术发展。
数据集下载:
yolov11: https://download.csdn.net/download/pbymw8iwm/90120718
yolov9: https://download.csdn.net/download/pbymw8iwm/90120719
yolov8: https://download.csdn.net/download/pbymw8iwm/90120748
yolov7: https://download.csdn.net/download/pbymw8iwm/90120754
yolov5: https://download.csdn.net/download/pbymw8iwm/90120760