作者简介:
高科,先后在 IBM PlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。
并且深耕深度学习和数据集训练,提供商业化的视觉人工智能检测和预警系统(煤矿,工厂,制造业,消防等领域的工业化产品),合作开发商业性游戏
(谢谢你的关注)
=====================================================================
数据集背景:
自动扶梯上人员摔倒掉落识别数据集是一种用于训练和评估人员摔倒掉落识别算法的数据集。该数据集包含了自动扶梯上的真实监控视频和标注信息,用于帮助研究人员开发自动扶梯安全监控系统。
该数据集中的视频涵盖了不同时间段、不同场景下的自动扶梯使用情况。每个视频都包含了自动扶梯上的多个人员活动,其中部分人员摔倒掉落,部分人员正常使用自动扶梯。视频的分辨率和帧率各不相同,以尽可能多样化地模拟真实环境。
数据集的标注信息包括每个视频帧中的人员位置和行为。对于摔倒掉落的人员,标注还包括摔倒的时间点和位置。标注信息通过人工标注或使用计算机视觉算法生成。
该数据集可用于训练人员摔倒掉落识别算法,帮助提高自动扶梯的安全性能。研究人员可以使用该数据集进行算法开发、模型训练和性能评估等工作。
自动扶梯上人员摔倒掉落识别数据集,对5447张图片进行yolo,coco,voc格式标注,可精准识别人是否在电梯里摔倒
数据集分割
5447总图像数
预处理
增强
关于train,test,validation集
在机器学习和深度学习中,常常会将数据集分为训练集(train set)、测试集(test set)和验证集(validation set)三部分。
训练集(train set)是用于模型的训练的数据集。在训练过程中,模型通过学习训练集中的样本来调整自己的参数,以使其能够更好地对未知数据进行预测。训练集通常是最大的数据集,因为越多的数据可以提供更多的信息和更好的训练效果。
测试集(test set)是用于评估模型的泛化能力的数据集。在模型训练完成后,使用测试集中的样本来评估模型的性能,判断模型在未知数据上的表现。测试集应该是独立于训练集的,以确保对模型进行正确的评估和比较。
验证集(validation set)用于调整模型的超参数,如学习率、正则化参数等。在训练过程中,通过在验证集上评估模型的性能,可以选择最优的超参数组合,从而改善模型的泛化能力。与测试集一样,验证集也应该是独立于训练集的,以确保调整的超参数不会对模型的性能造成过拟合。

正 常的(normal)




摔倒异常(anomaly)



使用背景
自动扶梯上人员摔倒掉落识别数据集具有以下使用场景和前景:
1. 安全监控系统开发:该数据集可以用于开发自动扶梯的安全监控系统,帮助识别和预测人员摔倒掉落的情况。通过使用该数据集训练的算法,可以实时监测自动扶梯上的人员行为,并及时发出警报或采取措施以避免事故发生。
2. 自动扶梯设计改进:通过分析该数据集,可以了解自动扶梯上人员摔倒掉落的原因和模式,从而为自动扶梯的设计和改进提供参考。例如,可以对扶梯的坡度、踏板设计、扶手高度等进行优化,以提高人员的稳定性和安全性。
3. 计算机视觉算法研究:该数据集对于计算机视觉算法的研究也具有重要意义。通过使用该数据集,研究人员可以开发出能够准确识别和判断自动扶梯上人员摔倒掉落的算法,并通过算法的优化改进来降低误判率和提高准确性。
4. 自动扶梯维护和故障检测:通过识别自动扶梯上人员摔倒掉落的情况,可以帮助及时检测到自动扶梯的故障或损坏,从而提前采取维修和保养措施,保障自动扶梯的正常运行和人员安全。
随着人工智能和计算机视觉技术的不断发展,自动扶梯上人员摔倒掉落识别的研究前景广阔。该数据集的使用将促进安全监控系统和自动扶梯设计的进一步改进,提高自动扶梯的安全性能,减少事故发生的概率,为人们提供更安全的乘坐环境。