【高级篇】了解 DeepSeek-R1 中的强化学习

目录

介绍

什么是强化学习以及它如何在LLM中应用?

PPO 及其局限性

PPO 的工作原理:

PPO 的局限性:

GRPO:数学推理的更好替代方案

GRPO:数学推理的更好替代方案

GRPO 的工作原理:

GRPO 的主要特点:

DeepSeek-R1:使用纯强化学习完成思考任务

结论



介绍

强化学习 (RL) 在提升大型语言模型 (LLM) 的推理能力方面发挥了关键作用。DeepSeek-R1 是一种最先进的推理模型,它证明了这一进步,展示了如何利用 RL 来改善人工智能中的逻辑思维和解决问题的能力。在本文中,我们将探索理解 DeepSeek-R1 所必需的 RL 基本方面,深入研究 RL 在 LLM 中的应用方式,分析近端策略优化 (PPO) 在先前模型中的作用,讨论其局限性,并解释为什么在 DeepSeekMath 中引入了组相对策略优化 (GRPO) 并随后应用于 DeepSeek-R1。

什么是强化学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值