【高级篇】DeepSeek-R1 论文解析

目录

介绍

LLM训练流程

介绍 DeepSeek-R1-Zero 模型

基于规则的强化学习

DeepSeek-R1-Zero 性能洞察

DeepSeek-R1-Zero 的自我进化过程

“顿悟时刻”现象

DeepSeek-R1 模型的训练过程

为什么需要DeepSeek-R1?

DeepSeek-R1 的训练流程

DeepSeek-R1 的出色成果


介绍

近年来,人工智能 (AI) 领域取得了快速发展,大型语言模型 (LLM) 为通用人工智能 (AGI) 铺平了道路。OpenAI的 O1 是一个出色的模型,它引入了创新的推理时间扩展技术,可显著增强推理能力。然而,它仍然是闭源的。

今天,我们深入研究 DeepSeek 推出的开创性研究论文 DeepSeek-R1。这篇题为DeepSeek-R1: Incentivizing Reasoning Capability in Large Language Models via Reinforcement Learning”的论文介绍了一种最先进的开源推理模型,以及使用大规模强化学习技术训练此类模型的详细方法。

DeepSeek-R1 论文标题

LLM训练流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值