【人工智能/深度学习必看】智能计算系统 第二章 神经网络设计原则 过拟合和正则化、交叉验证

本文探讨了机器学习中常见的过拟合问题及其解决办法——正则化。介绍了过拟合产生的原因,并通过添加惩罚项来减少模型复杂度,提高泛化能力。此外,还提到了交叉验证的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

过拟合和正则化

在这里插入图片描述
欠拟合:考虑问题太简单,训练特征过少
过拟合:训练特征过多,泛化能力过差,预测能力不足(常见)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
过拟合泛化过差,通过正则化,添加惩罚项,消除不重要的特征
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

交叉验证

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值