P1221【逆素数】最多因子数

here

逆素数本质就是想让数值最小并且因子数量最多。

逆素数的条件就是逆素数x 在0<i<x中所有的i的约数的个数都小于x的约数的个数。

x可以被分解为x=a1b1 *a2b2 *…

x的因子个数就是(b1+1) * (b2+1)*…

这里注意一下若区间较短不存在逆素数就直接暴力就好了 注意O(n)的判因子的方法。

代码环节:

//god with me
//#pragma GCC optimize(1)
//#pragma GCC optimize(2)
//#pragma GCC optimize(3,"Ofast","inline")
//#include <bits/stdc++.h>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define inf 0x7fffffff
//#define ll long long
#define int long long
//#define double long double
//#define double long long
#define re int
//#define void inline void
#define eps 1e-8
//#define mod 1e9+7
#define ls(p) p<<1
#define rs(p) p<<1|1
#define pi acos(-1.0)
#define pb push_back
#define mk make_pair
#define P pair < int , int >
#define pd pair <double,double>
#define x first
#define y second
#define db double
using namespace std;
const int mod=4933;
//const int inf=1e18;
const int M=1e8;
const int N=1e5+5;//??????.???? 4e8

//反素数
int l,r;
int ans,maxn;
int prime[]={2,3,5,7,11,13,17,19,23,29};
int divide(int n)
{
    int num=1;
    for(int i=2;i<=sqrt(n);i++)
    {
        if(n%i==0)
        {
            num++;
            int temp=n/i;
            if(n%temp==0&&temp!=i)num++;         //求反就是跟他相积为n的另一个数,判断是不是平方
        }
    }
    if(n!=1)num++;
    return num;
}

void dfs(int deep,int arr,int cur,int num)  //质数层数  当前质数最大质数   因子个数  当前的质数之积
{
    if(cur>maxn||(cur==maxn&&num<ans))
    {
        maxn=cur,ans=num;
    }
    if(deep>8)return;    //原因是质数单个乘积超范围
    for(int i=1;i<=arr;i++)           //从1开始因为后面可能是0
    {
        num*=prime[deep];
        if(num>r) return;
        dfs(deep+1,i,(i+1)*cur,num);
    }
}
void solve()
{
    cin>>l>>r;
    if(r-l<100000)
    {
        for(int i=l;i<=r;i++)
        {
            int cnt=0;
            cnt=divide(i);
            if(cnt>maxn)
            {
                maxn=cnt;
                ans=i;
            }
        }
        cout<<"Between "<<l<<" and "<<r<<", "<<ans<<" has a maximum of "<<maxn<<" divisors.";

    }
    else
    {
        dfs(0,31,1,1);
        cout<<"Between "<<l<<" and "<<r<<", "<<ans<<" has a maximum of "<<maxn<<" divisors.";
    }
}

signed main()
{
    int T=1;
//    cin>>T;
    for(re index=1;index<=T;index++)
    {
        solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

while WA er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值