peach_yang的博客

算法 ACM

HDU 1978 How many ways

Question:
Description
这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下:
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.机器人不能在原地停留。
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。

如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)

点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。
Input
第一行输入一个整数T,表示数据的组数。
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
Output
对于每一组数据输出方式总数对10000取模的结果.
Sample Input
1
6 6
4 5 6 6 4 3
2 2 3 1 7 2
1 1 4 6 2 7
5 8 4 3 9 5
7 6 6 2 1 5
3 1 1 3 7 2
Sample Output
3948
解题思路:这道可以用dfs做
(http://acm.hust.edu.cn/vjudge/contest/125402#problem/H)

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MOD=10000;
int a[105][105],dp[105][105],n,m,t;
int dfs(int x,int y)
{
    if(dp[x][y]>=0)
        return dp[x][y];  
    dp[x][y]=0;
    for(int i=0;i<=a[x][y];i++)
    {
        for(int j=0;j<=a[x][y]-i;j++)
        {
            if(i+x<1||i+x>n||j+y<1||j+y>m)
                continue;    //判断边界
            dp[x][y]=(dp[x][y]+dfs(x+i,y+j))%MOD;
        }
    }
    return dp[x][y];
}
int main()
{
    cin>>t;
    while (t--)
    {
        cin>>n>>m;
        memset(dp,-1,sizeof(dp));
        dp[n][m]=1;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                 cin>>a[i][j];
        printf("%d\n",dfs(1,1));
    }
    return 0;
}

体会:dfs很好用,但看到题经常想不到,自己的薄弱环节,还是得多练题

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/peach_yang/article/details/52367265
文章标签: 算法 ACM
个人分类: 编程成长 HDU
想对作者说点什么? 我来说一句

POJ2506,Tiling

java大数递推

u011572579 u011572579

2014-07-29 11:14:27

阅读数:1029

没有更多推荐了,返回首页

不良信息举报

HDU 1978 How many ways

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭