python中的size,shape,len,count的使用举例

本文介绍了Python中列表的基本操作如len()和count(),并详细探讨了NumPy库中数组的操作,包括size()与shape()函数的使用,帮助读者理解如何高效地处理一维及多维数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.len():

返回对象的长度,注意不是length()函数 

a = [1, 2, 3]
b = [[1, 2, 3], [3, 4, 5]]
print('-- a length:', len(a))  # -- a length: 3
print('-- b length:', len(b)) # -- b length: 2, 一个元素是[1,2,3],另外一个是[3,4,5]

2.count():

计算包含对象个数 

a = [1, 2, 3, 1]
b = [[1, 2, 3, 3], [3, 4, 5]]
print('-- a count 1:', a.count(1))  # -- a count 1: 2
print('-- b count 3:', b.count(3)) # -- b count 3: 0 **count()用于一维list**
print('-- b[0] count 3:', b[0].count(3))  # -- b[0] count 3: 2
s = 'qwesdascas'
print('--s count b: ', s.count('a')) # --s count b:  2

3.size():

计算数组和矩阵所有数据的个数,是numpy模块中才有的函数,既可以作为属性,也可以作为函数使用,详见例子。可以只计算某一个维度的元素个数,参数0表示行,参数1表示列。 

import numpy as np
a = np.array([1, 2, 3, 1])
b = np.array([[1, 2, 3], [3, 4, 5]])
print('-- a shape:', a.size)  # -- a shape: 4  当属性用
print('-- b shape:', b.size) # -- b shape: 6
print('---a shape: ', np.size(a)) # -- a shape: 4  当函数用
print('-- b shape:', np.size(b)) # -- b shape: 6
print('-- b shape:', np.size(b, 0)) # -- b shape: 2    参数 0表示行
print('-- b shape:', np.size(b, 1)) # -- b shape: 3    参数 1表示列

4.shape ():

得到矩阵每维的大小 ,是numpy模块中才有的函数,既可以作为属性,也可以作为函数使用,详见例子。

import numpy as np
a = np.array([1, 2, 3, 1])
b = np.array([[1, 2, 3], [3, 4, 5]])
print('-- a shape:', a.shape)  # -- a shape: (4,)
print('-- b shape:', b.shape) # -- b shape: (2, 3)
print('---a shape: ', np.shape(a)) # -- a shape: (4,)
print('-- b shape:', np.shape(b)) # -- b shape: (2, 3)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值