Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓“好特征”的指导下构建目标函数来进行优化,其中只涉及一个可调参数。本文将主要讨论两个问题:(1)什么样的特征是好的特征;(2)如何利用好特征的条件来构造 Sparse Filtering 的目标函数。
目录链接
参考文献
作者: peghoty
出处: http://blog.csdn.net/itplus/article/details/22071035
欢迎转载/分享, 但请务必声明文章出处.
本文深入探讨SparseFiltering无监督学习算法,重点解析好特征的定义及其如何指导目标函数的构建与优化过程。SparseFiltering不同于传统特征学习方法,它直接分析训练数据特征分布,仅涉及单一可调参数。
1万+

被折叠的 条评论
为什么被折叠?



