Sparse Filtering 学习笔记(一)网络结构与特征矩阵

        
         Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓“好特征”的指导下构建目标函数来进行优化,其中只涉及一个可调参数。本文将主要讨论两个问题:
(1)什么样的特征是好的特征;
(2)如何利用好特征的条件来构造 Sparse Filtering 的目标函数。


目录链接


(一)网络结构与特征矩阵

(二)好特征的刻画

(三)目标函数的建立和求解




参考文献


1. Ngiam, J., Koh, P. W., Chen, Z., Bhaskar, S. A., Ng, A. Y. (2011). Sparse Filtering. In NIPS (Vol. 11, pp. 1125-1133).

2. 牛顿法与拟牛顿法学习笔记(五)L-BFGS 算法

3. Deep learning made easy


作者: peghoty 

出处: http://blog.csdn.net/itplus/article/details/22071035

欢迎转载/分享, 但请务必声明文章出处.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值