我们高中阶段其实就学过线性规划的知识,但是那个时候可能感觉不太重要,带你们重新回忆一下。
这是高中时期解决此类题型的一般步骤:
定义决策变量:确定问题中需要做出决策的变量。
建立目标函数:根据问题要求,确定要最大化或最小化的函数。
列出约束条件:根据问题的实际要求,列出所有可能的约束条件,这些约束条件通常以线性不等式或等式的形式出现。
绘制可行域:在坐标系中绘制出所有约束条件所定义的可行域。
寻找最优解:在可行域的顶点处计算目标函数的值,以确定最优解。
检验解的可行性:确保找到的最优解满足所有的约束条件。
看到这个图大家是不是想起来了,其实到数学建模这里线性规划也没有那么神秘,只不过它不再局限于纸上了,你要用你所学过的编程语言表示出来解出来。
而大家期待的线性规划最重要的三点:决策变量、目标函数、约束条件
对于线性规划的标准形式:
目标函数:
约束条件:
这里就不细讲了,最后告诉大家如果大一新生想入手数学建模,从线性规划开始比较容易。