数学建模小白——线性规划

我们高中阶段其实就学过线性规划的知识,但是那个时候可能感觉不太重要,带你们重新回忆一下。

这是高中时期解决此类题型的一般步骤:

定义决策变量:确定问题中需要做出决策的变量。

建立目标函数:根据问题要求,确定要最大化或最小化的函数。

列出约束条件:根据问题的实际要求,列出所有可能的约束条件,这些约束条件通常以线性不等式或等式的形式出现。

绘制可行域:在坐标系中绘制出所有约束条件所定义的可行域。

寻找最优解:在可行域的顶点处计算目标函数的值,以确定最优解。

检验解的可行性:确保找到的最优解满足所有的约束条件。

看到这个图大家是不是想起来了,其实到数学建模这里线性规划也没有那么神秘,只不过它不再局限于纸上了,你要用你所学过的编程语言表示出来解出来。

而大家期待的线性规划最重要的三点:决策变量、目标函数、约束条件

对于线性规划的标准形式:

目标函数:z=c_1x_1+c_2x_2+...+c_nx_n

约束条件:a_{11} x_1+a_{12}x_2+...+a_{1n}x_n=b_1

                a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2 

                  ...

                  a_{m1}x_1+a_{m2}+...+a_{mn}x_n=b_m

                 x_j\geq0,j=1,2,3,...,n

这里就不细讲了,最后告诉大家如果大一新生想入手数学建模,从线性规划开始比较容易。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值