算法概论第八章课后习题

算法概论第八章课后习题

8.3 吝啬SAT问题是这样的:给定一组子句(每个子句都是其中文字的析取)和整数k,求一个最多有k各变量为true的满足赋值 —— 如果该赋值存在。证明吝啬SATNP完全问题。

证:

①证明吝啬SATNP问题。

对于一组待判断的赋值,将其分别代入子句中,即可验证该赋值是否是有效的。因此吝啬SAT可以在多项式时间内被验证,所以是NP问题。

②证明吝啬SATNP完全问题。

通过将k设为所有变量的总个数,可以将SAT归约到STINGY SAT,因此吝啬SATNP完全问题。

 


8.9 在碰撞集(HITTING SET)问题中,给定一组集合{S1, S2, ..., Sn} 和预算b,,我们希望求出一个所有的Si 相交且规模不超过b的集合H,当然,前提是这样的集合确实存在。换句话说,我们希望对所有的i满足

证明该问题为NP完全问题

证:

①证明碰撞集是NP问题。

显然,对于一组集合{S1, S2, ..., Sn} 集合H,我们可以在多项式时间内验证是否成立,因此碰撞集问题是NP问题。

②证明碰撞集是NP完全问题,通过将最小顶点覆盖规约到碰撞集问题来进行证明。

对有n条边和m个顶点的图G,取点集的集合S = {S1, S2,..., Sn},其中SiG中第i条边的两个顶点的集合。因此,最小顶点覆盖问题可以表示为:求一个规模不超过b的点集H,使得S中的每一个集合Si都至少有一个元素在H中。

因此,可以将最小顶点覆盖规约到碰撞集问题,碰撞集问题为NP问题。

 


8.12 k-生成树(k-SPANNING TREE)问题是这样的
输入:无向图

输出:G的一个生成树,其中所有节点度数都不超过k——如果该树存在。

请证明对任意 

(a) k-生成树问题是一个搜索问题。 
(b) k-生成树问题是NP-完全的。(提示:由k=2开始,考虑该问题与Rudrata路径问题的关联)

证:

(a) 

对于待判断的一棵G的生成树,可以通过计算每个节点的度数,来判断该生成树是否为k-生成树。因此,k-生成树问题可在多项式时间内被验证,是搜索问题。

(b)

(a)可知,k-生成树问题是NP问题。

k = 2时,若2-生成树存在,则该生成树是图的一条最长链,该链包含图中的所有节点。取最长链的两端节点,则该链实际为一条Rudrata路径,因此Rudrata路径问题可以规约到k-生成树问题。

k>2时,同理可证Rudrata路径问题可以规约到k-生成树问题。

因此,k-生成树问题是NP-完全的。

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值