小背包
Time Limit: 1000 MS Memory Limit: 10240 K
Total Submit: 1596(290 users) Total Accepted: 399(258 users) Rating: Special Judge: No
Description
有一个容量为m(1<=m<=4000000)的背包,有n(1<=n<=16)个物品,每个物品有体积v(1<=v<=2012)和价值w(0<=2012),现在要你选择一些物品,使得背包所装物品的总价值最大。
Input
有多组测试数据,但是不会超过10组。
对于每组测试数据,第一行是两个整数m和n,表示背包容量的和物品个数。接下来有n行,每行有两个整数,表示一个物品的体积和价值。
输入到文件结束。
Output
对于每组测试数据,输出一行,包含一个整数,为背包能装下物品的最大价值。
Sample Input
10 3
6 9
5 5
5 5
3 2
1 2
2 1
Sample Output
10
3
Source
2012级新生练习赛 3
Author
黄李龙@HRBUST
思路
写的第一道完全意义上的dp的题目,纪念一下。
问题可以拆分成以下自问题(物品编号i从0~n-1,背包剩余容量用j表示,第i个物品的价值v[i],第i个物品的重量为w[i]。
1、若拿不动第i个物品,即w[i]>j,那么这个背包的价值就是dp[i][j] = dp[i+1][j]。
2、若不拿第i个物品,即w[i]<=j,那么这个背包的价值dp[i][j] = dp[i+1][j]。
3、若拿第i个物品,即w[i]<=j,那么这个背包的价值dp[i][j] = dp[i+1][j-w[i]] + v[i]。
在拿的动的情况下, 我们只要不断的去选择2,3情况当中价值会最大的那种情况就可以。
那么我们就可以写出状态转移方程,同时注意一下边界处理。
dp[i][j] = 0 (i==n)
dp[i][j] = dp[i+1][j] (j<w[i])
dp[i][j] = max(dp[i+1][j],dp[i+1][j-w[i]]+v[i]) (other)
注意事项
第一眼看过去,本题的数据超大,貌似会各种爆,但是仔细一想,这里物品最多的重量也不会超过16x2012=32192,所以我们只用开一个17x33000的dp数组是完全够的,但是这样就完了吗?不会,我们会无限RE,因为题目数据的背包最大值远超过33000,所以如果背包的最大容量超过了33000,那么j在遍历的时候就会遇到数组越界的情况,必然RE。
解决办法就是在开始运行之前先检查一下所有物品的总容量会不会超过最大值,如果没有那么必然可以装下所有物品,那么直接输出这些物品的总价值就可以了,因为物品总质量撑死也不会超过33000,所有只要有一个质量超过最大质量的背包就绝对没问题。
AC代码
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int dp[20][33000];
int v[20],w[20];
void solve(void)
{
int maxw,wn;
while(~scanf("%d%d",&maxw,&wn))
{
int vsum=0,wsum=0;
for(int i = 0 ; i < wn ; i++)
{
scanf("%d%d",&w[i],&v[i]);
wsum+=w[i];
vsum+=v[i];
}
if(wsum<=maxw){
printf("%d\n",vsum);
continue;
}
memset(dp,0,sizeof(dp));
for(int i = wn-1 ; i >= 0 ; i--)
for(int j = 0 ; j <= maxw ; j++)
{
if(j<w[i]) dp[i][j] =dp[i + 1][j];
else dp[i][j] = max(dp[i+1][j],dp[i+1][j-w[i]]+ v[i]);
}
printf("%d\n",dp[0][maxw]);
}
}
int main(void)
{
solve();
return 0;
}