【基础dp】HRBUST 1861 猥琐宅男——koko

猥琐宅男——koko

Time Limit: 1000 MS Memory Limit: 32768 K

Description

唔。。从前有个小胖子叫koko(QAQ。。。)很喜欢吃香蕉,茄子和黄瓜(唔。。好奇怪的癖好。。。),而且每天都必须且只能吃一个而且相邻两天不能吃一样的水果~(为什么必须吃一个?因为不吃会受不了,为什么只能吃一个?因为吃多了会受不了~)唔。由于这三种水果(水果!?)灰常可怕,可以吸收天地之间离散的邪恶值,所以呢koko希望你能帮他设计一种方案使得koko在n天内吃这三种水果获得的邪恶值最小~。

Input

输入以T开头,代表有T组样例

每组样例第一行有一个整数n(1<=n<=40000),代表koko希望你帮他规划n天的饮食方案,接下来n行每行有三个数字,X, Q, H分别代表在这一天吃香蕉,茄子,和黄瓜会获得的邪恶值(1<=X, Q, H<=1000)

Output

对于每一组样例输出可以获得的最小邪恶值

Sample Input

2
4
13 23 12
77 36 64
44 89 76
31 78 45
3
26 40 83
49 60 57
13 89 99

Sample Output

Case 1: 137
Case 2: 96

Author

小伙伴们@哈商大

题意

RT
给你n组数据,每组数据中有三个值,从中选择一个,且不能选择与上一次选择相同位置的值,问最终选择的所有数据中最小数据是多少。

思路

乍一眼看貌似一个贪心问题,只要不断选择每组数据中最小的那个就好了,但是这种情况下并不是最优解,因为你无法在每次选择有多个最小值(最小值一样)的情况下选出正确答案。

这时候我们考虑dp。
总的状态我们是选出总和最小的值。
分状态即使每次选择加上这一次的花费最小的值。
每轮也就只有三次选择。
加上不能选择上一次相同的物品,方程也就很好写出来啦。

    (i=0)
    dp[i][0] = a[i][0];
    dp[i][1] = a[i][1];
    dp[i][2] = a[i][2];
    (i>0)
    dp[i][0] = min(dp[i-1][1],dp[i-1][2])+a[i][0];
    dp[i][1] = min(dp[i-1][0],dp[i-1][2])+a[i][1];
    dp[i][2] = min(dp[i-1][0],dp[i-1][1])+a[i][2];

坑点

1、容易想成贪心。
2、cin输入数据会超时。

AC代码

#include<bits/stdc++.h>
using namespace std;

int dp[40010][3];
int a[40010][3];

void solve(void)
{
    int flag = 1;
    int t;
    cin>>t;
    while(t--)
    {

        int n;
        cin>>n;
        for(int i = 0 ; i < n ; i++)
        {
            scanf("%d%d%d",&a[i][0],&a[i][1],&a[i][2]);//注意cin录入会超时。
        }
        for(int i = 0 ; i < n ; i++)
        {
            if(i==0)
            {
                dp[i][0] = a[i][0];
                dp[i][1] = a[i][1];
                dp[i][2] = a[i][2];
            }
            else{
                dp[i][0] = min(dp[i-1][1],dp[i-1][2])+a[i][0];
                dp[i][1] = min(dp[i-1][0],dp[i-1][2])+a[i][1];
                dp[i][2] = min(dp[i-1][0],dp[i-1][1])+a[i][2];
            }
        }

        int ans = min(dp[n-1][0],min(dp[n-1][1],dp[n-1][2]));
        printf("Case %d: %d\n",flag,ans);
        flag++;
    }
}


int main(void)
{
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

两米长弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值