1:pdb调试:基于命令行的调试工具,非常类似gnu和gdb调试,以下是常用的调试命令:
可以python -m pdb xxx.py(你的py文件名)进入命令行调试模式
命令 | 简写命令 | 作用 |
beak | b | 设置断点 |
continue | c | 继续执行程序 |
list | l | 查看当前行的代码段 |
step | S | 进入函数 |
return | r | 执行代码直到从当前函数返回 |
quit | q | 中止并退出 |
next | n | 执行下一行 |
| p | 打印变量的值 |
help | h | 帮助 |
args | a | 查看传入参数 |
| 回车 | 重复上一条命令 |
brerak | b | 显示所有断点 |
break lineno | b lineno | 在指定行设置断点 |
break file:lineno | B file:lineno | 在指定文件行设置断点 |
clear num |
| 删除指定断点 |
bt |
| 查看函数调用栈帧 |
2:多任务的概念:在现实中人可以同时进行多个动作,在操作系统中同时进行多个任务就叫做多任务,提到多任务就想起了并发和并行。
并发:任务数超过cpu的核数,日常生活中的大部分都是并发 。
并行:任务数小于或等于cpu核数,任务都同时在进行着。
3:fork创建进程(在linux操作系统中适用,在windows中python没有这种用法) 看一下这个小示例:
import os
ret = os.fork()
if ret == 0:
print("1")
else: print("2")
程序输出如下:
root@ubuntu:/home/peng/py高级# python3 test.py
2
1
root@ubuntu:/home/peng/py高级#
你也许会好奇,怎么把1和2都输出了? 看如下解释:
-------------------------------------------------------华丽的分割线---------------------------------------------------
原来的进程叫做父进程,fork语句后生成子进程,而子进程生成后的ret的值为0,但父进程的ret是大于零的,所以父进程执行else语句的内容,子进程执行if后边的语句
所以打印的结果是2 1或者 1 2,但是都会出现1和2
根据系统调度不同输出的结果不同但都会输出
父进程与子进程谁先执行由系统决定,与系统决定相关的因素有:时间片轮转,优先级调度
说一个有趣的东西:fork炸弹 (轻易不要尝试,不然你的电脑可能会gameover)
import os
while True:
os.fork()
会不停的创建新进程,一直到操作系统吧你这个程序干掉为止 ,切记fork炸弹不要乱用,WARNING
---------------------------------------华丽的分隔长线--------------------------------------------------------------------------------
4:Process(类):在windows和linux平台都可以,实现创建子进程的功能。看了如下代码你就会了解的:
from multiprocessing import Process
import os
def run_proc(name):
print(“子进程运行中,name=%s,pid=%d…”%(name,os.getpid())
if __name__ == ‘__main__’:
print(“父进程%d’%os.getpid())
p = Process(target=run_proc,args=(‘test’,))
print(‘子进程将要执行’)
p.start()
p.join()
print(“子进程已结束“)
以上代码中导入相关模块,定义函数。
调用mutiprocessing模块中的Process类,使用Process(targer=xxx(函数名),args=(参数1,参数2,..))这里注意如果有一个参数在后边加一个逗号,在声明子进程后再子进程中调用run_proc函数,并把test作为字符串传给run_proc函数,start方法开启子进程,join()方法让父级进程等待子进程结束后在结束。
5:进程池(Pool)
首先在程序中导入Pool :from multiprocessing import Pool
po=Pool(3)定义一个进程池最大进程数为3
po.apply_async(函数名,(传递给目标的参数元组))调用目标
po.close()关闭进程池,关闭后po不在接受新的请求
po.join()等待所有的子进程执行完成
看以下code:
from multiprocessing import Pool
import time
import os
import random
def test(num):
for i in range(5):
print("===pid=%d==num=%d"%(os.getpid(),num))
time.sleep(1)
po = Pool(3)
for i in range(4):
po.apply_async(test,(i,))
#po.join()
po.close()
po.join()