
全极化SAR图像处理
文章平均质量分 76
peng_peng123
这个作者很懒,什么都没留下…
展开
-
全极化SAR图像freeman分解
在全极化SAR图像分类中,我们常常根据提取地物的散射特征来进行分类,其中freeman分解是我们常常用的其中一种非相干目标分解的方法。1.Freeman分解简单介绍freeman分解是1998年Freeman和Durden在van Zyl的研究基础上提出的一种非相干矩阵分解方法,其中主要思路是将极化协方差矩阵分解为三种主要的散射机理,即面散射、体散射、二面角散射。其表现形式其中原创 2016-01-07 14:26:07 · 14857 阅读 · 17 评论 -
全极化SAR的H/alpha、anistropy分解
之前说过,可以利用polSARpro_4.0对原始的SAR数据进行处理,利用软件可以得到极化特征:散射角,熵和反熵,那么如何用程序求出这几个分量呢?以下是实现分解的程序。clear all;close all;%得到相干矩阵Trow = 900;col = 1024;%path = 'E:\研究生阶段\PolSAR\实验仿真\数据\原始数据\T3Lee金门';tic;原创 2016-03-01 15:29:28 · 9898 阅读 · 1 评论 -
H/A/wishart分类
以下是全极化SAR经典的H/A/Wishart分类方法,转载时请注明出处。1.首先可以利用polSARpro_4.0对原始的SAR数据进行处理,利用软件可以得到极化特征:散射角,熵和反熵。或者自己编写程序,求得这些特征。2.根据已经得到的H/A(熵和散射角)编写程序,如下:clear all;clcrow=610;col=1000;fid = fopen( 'alp原创 2016-01-10 10:57:04 · 6205 阅读 · 3 评论 -
图像-不变距
不变矩的主要思想是使用对变换不敏感的基于区域的几个矩作为形状特征,Hu提出了7个这样的矩,在他工作的基础上出现了很多改进的版本。图像的几何不变矩 矩特征主要表征了图像区域的几何特征,又称为几何矩, 由于其具有旋转、平移、尺度等特性的不变特征,所以又称其为不变矩。在图像处理中,几何不变矩可以作为一个重要的特征来表示物体,可以据此特征来对图像进行分类等操作。 1.HU矩转载 2016-04-18 09:27:49 · 676 阅读 · 0 评论 -
联合稀疏SOMP代码
原理网上有好多,在此就不写啦,这个是我自己在OMP基础上稍微改进的,作为一个函数可以调用,大家转载时要注明出处哟~~function A=SOMP1(D,X,L) % 输入参数: % D - 过完备字典,注意:必须字典的各列必须经过了规范化% X - 信号% L - 系数中非零元个数的最大值(可选,默认为D的列数,速度可能慢)% 输出参数原创 2016-02-28 12:09:55 · 4918 阅读 · 1 评论