图像处理
文章平均质量分 83
peng_peng123
这个作者很懒,什么都没留下…
展开
-
贝叶斯分类器
贝叶斯(Baysian)分类器[1]是一种理论上比较简单的分类器。但是结合不同的网络结构和概率模形,它又可以演化成非常复杂的分类体系。本短文主要演示Baysian + Gaussian如何解两类问题。 其中,分母部分主要用于归一化。p(y)为先验概率(prior), p(x|y)为条件概率或称之为类概率密度(即已知x是哪一类的情况下p(x)的概率密度)。转载 2016-06-24 16:35:15 · 925 阅读 · 0 评论 -
LBP算法(人脸识别特征提取)
LBP(Local Binary Patterns,局部二值模式)是提取局部特征作为判别依据的。LBP方法显著的优点是对光照不敏感,但是依然没有解决姿态和表情的问题。不过相比于特征脸方法,LBP的识别率已经有了很大的提升。在[1]的文章里,有些人脸库的识别率已经达到了98%+。 1、LBP特征提取 最初的LBP是定义在像素3x3邻域内的,以邻域中心像素为阈值,将相邻的8个像转载 2016-06-24 18:44:30 · 23407 阅读 · 2 评论 -
人脸识别介绍
人脸识别主要算法原理 主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模转载 2016-06-14 10:34:53 · 6173 阅读 · 0 评论