Spark 两个RDD按key合并(join算子和cogroup算子)

在工作中经常遇到需要合并RDD的情况,记录下处理情况。join和cogroup算子都能达到要求,按key合并,只是当rdd存在多个相同的key时候,最终的输出结果不一样。网上找到了处理情况,自己也测试了,代码如下:

object Test {
  def main(args: Array[String]): Unit = {

    val spark = SparkSession.builder().appName("test").
      master("local[2]").getOrCreate()

    val sc = spark.sparkContext
    sc.setLogLevel("WARN")

    /**
      * id      name
      * 1       zhangsan
      * 2       lisi
      * 3       wangwu
      */
    val idName = sc.parallelize(Array((1, "zhangsan"), (2, "lisi"), (3, "wangwu")))

    /**
      * id      age
      * 1       30
      * 2       29
      * 4       21
      */
    val idAge = sc.parallelize(Array((1, 30), (2, 29), (4, 21)))

    println("cogroup")

    /**
      * (1,(CompactBuffer(zhangsan),CompactBuffer(30)))
      * (2,(CompactBuffer(lisi),CompactBuffer(29)))
      * (3,(CompactBuffer(wangwu),CompactBuffer()))
      * (4,(CompactBuffer(),CompactBuffer(21)))
      */
    idName.cogroup(idAge).collect().foreach(println)

    println("join")
    // fullOuterJoin于cogroup的结果类似, 只是数据结构不一样
    /**
      * (1,(Some(zhangsan),Some(30)))
      * (2,(Some(lisi),Some(29)))
      * (3,(Some(wangwu),None))
      * (4,(None,Some(21)))
      */
    idName.fullOuterJoin(idAge).collect().foreach(println)

    /**
      * id      score
      * 1       100
      * 2       90
      * 2       95
      */
    val idScore = sc.parallelize(Array((1, 100), (2, 90), (2, 95)))

    println("cogroup, 出现相同id时")

    /**
      * (1,(CompactBuffer(zhangsan),CompactBuffer(100)))
      * (2,(CompactBuffer(lisi),CompactBuffer(90, 95)))
      * (3,(CompactBuffer(wangwu),CompactBuffer()))
      */
    idName.cogroup(idScore).collect().foreach(println)

    println("join, 出现相同id时")

    /**
      * (1,(Some(zhangsan),Some(100)))
      * (2,(Some(lisi),Some(90)))
      * (2,(Some(lisi),Some(95)))
      * (3,(Some(wangwu),None))
      */
    idName.fullOuterJoin(idScore).collect().foreach(println)
  }


}

参考:https://blog.csdn.net/wo334499/article/details/51689563

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值