【Metashape精品教程8】减少误差——优化和相机校准

本文是Metashape教程的第八部分,重点介绍如何通过减少误差来提高重建质量。主要方法包括:1) 通过重建不确定性过滤;2) 通过投影精度过滤;3) 通过重投影误差过滤。每个步骤都伴随着相机模型的优化,并在过滤后检查相机校准以确保精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【Metashape精品教程8】减少误差——优化和相机校准


前言

减少误差涉及选择和删除低质量的连接点。使用的质量指标基于图像的相机几何形状。目标是保留仅由高质量连接点组成的稀疏点云,并反复优化相机模型。这是工作流程中最主观的部分,可能需要测试每个阶段可以删除多少点才能创建品质更高的产品。相机之间较差的几何关系导致使用重建不确定性过滤选择的点。使用投影精度标准选择内部给出较差匹配精度的连接点。最后,使用重投影误差标准选择作为错误匹配结果的连接点。选择和淘汰过程是迭代的。去除不良连接点将改善估计的内部和外部定向参数,但每次连接点被移除,剩余连接点的精度发生变化,需要重新优化。

一、减少误差方法 1:通过重建不确定性进行过滤

减少错误的第一阶段是删除因相机几何形状不佳而导致的点。重建不确定性也可以被认为是在对两个图像之间的 3D 点坐标进行三角剖分时产生的误差椭圆的最大和最小半轴之间的比率。

1.Model —逐步选择
在这里插入图片描述
2.通过重建不确定性进行过滤连接点 (每次删除不超过 50% 的点)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值