大模型提示词注入防护与安全评估(含代码)

写在前面:本文主要聚焦两部分内容,其一是通过代码实践来研究和验证基于llamafirewall在提示词注入防护的能力,通过学习此部分可以理解大模型自身防护中最关键的部分-提示词注入的防护方法;其二是了解如果评估一个大模型是否安全,我们所知道的GPT4、deepseek、claude、QWEN等通用大模型在发布时都会展示自己在各类benchmark上的得分情况,包括通用语言理解GLUE、多学科知识与推理MMLU、代码生成HumanEval等等,理所当然,也需要一个考量大模型安全能力的基准,CyberSecEval就是一套安全基准,通过研究评估函数和数据集,可以深入理解大模型基准测试的过程和原理。

(祝大家五一节快乐,代码调通了我的五一正式开始)

        正文开始先说结论,llama Firewall的提示词检测模块核心基于meta-llama/Llama-Prom

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云上笛暮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值