文章目录
摘要: Datax安装步骤及优劣势分析
关键词: Datax、数据集成、安装步骤、优劣势分析
整体说明
Datax安装步骤及优劣势分析,大致如下:
一、安装步骤
1.1、前置条件
- Linux环境,测试时机器操作系统为 :CentOS Linux release 7.6.1810 (Core)
- 已经安装了 Python ,测试时版本:Python 2.7.5
- 能够访问公网,已经安装了 wget 命令 (非必须,如果不满足可以自己下载上传安装包)
1.2、下载安装包
直接使用 wget 即可
wget https://datax-opensource.oss-cn-hangzhou.aliyuncs.com/202308/datax.tar.gz
1.3、解压安装包
解压即用,得到datax 文件夹
tar -zxvf datax.tar.gz
1.4、测试是否可用
其中 /home/datax 为刚解压出来的文件夹
python /home/datax/bin/datax.py /home/datax/job/job.json
得到如下图所示日志,即说明Datax 安装成功
二、优劣势分析
2.1、成熟度
- 优势:由阿里巴巴内部广泛使用并开源,经过大规模生产环境验证,稳定性较高。采用插件化架构,扩展性较好。
- 劣势:社区活跃度较低,更新频率不高,对新兴数据源的支持相对滞后。
2.2、社区热度和生态
- 优势:企业级支持较强
- 劣势:主要在阿里生态内使用,社区活跃度较低
2.3、集成数据量
- 优势: 单机运行,全内存操作,适合中等规模数据(千万级至亿级),
- 劣势: 对资源占用较高
2.4、安装复杂度
- 优势: 部署简单,无需依赖复杂环境
2.5、适用场景
- 优势: 阿里系数据库(如 ODPS、ADS)与其他数据源同步;异构数据源离线批处理
- 劣势: 实时同步、高并发或需复杂数据清洗的场景
2.6、使用难度
- 劣势: 没有自带的可视化页面,需要修改后台JSON,才能使用,比较复杂
2.7、服务占用
优势: 不需要启动任务服务,不长期占用人很端口资源、计算资源和内存资源,只在启动时占用
2.8、总结建议
-
常用场景:
-
阿里生态场景兼容性
-
绝大部分离线数据集成场景
-
-
使用建议: 可以使用其他调度平台 比如 DolphinScheduler 的可视化页面,来解决没有可视化页面,没有调度任务系统的问题