栈的应用 - 仿LISP字符串运算

描述

LISP语言唯一的语法就是括号要配对。
形如 (OP P1 P2 …),括号内元素由单个空格分割。
其中第一个元素OP为操作符,后续元素均为其参数,参数个数取决于操作符类型
注意:参数 P1, P2 也有可能是另外一个嵌套的 (OP P1 P2 …)
当前OP类型为add/sub/mul/div(全小写),分别代表整数的加减乘除法。简单起见,所以OP参数个数为2
举例:

  • 输入:(mul 3 -7)输出:-21
  • 输入:(add 1 2) 输出:3
  • 输入:(sub (mul 2 4) (div 9 3)) 输出 :5
  • 输入:(div 1 0) 输出:error

解决方案

众所周知,应用程序中运行的时候会有各种各样的函数的嵌套调用,甚至是递归,整个函数调用的路径(调用链)是以栈(称之为调用栈)的形式保存,异常的时候打印(或者coredump的时候来记录的吐核)都会记录逐层的调用栈信息。为什么函数逐层深入调用完毕之后能回到原来的调用点呢,就是一个配对的问题。配对也就是有明确的固定的格式来区别起始位置和结束位置,比如函数的调用入口就是起始位置,函数返回就是结束位置。针对配对的问题,可以用栈(stack)这种数据结构解决,具体的解决思路:

  • 开始调用symbol-1,起始位置symbol-1-starting压栈
  • symbol-1中调用symbol-2,起始位置symbol-2-starting压栈
  • symbol-2调用完毕,结束位置symbol-2-ending,栈顶是symbol-2-starting,弹栈进行处理
  • symbol-1调用完毕,结束位置是symbol-1-ending,栈顶是symbol-1-starting,弹栈进行处理
  • 调用整个过程也完毕,调用栈也是空栈

举个栗子

举个很常见的例子,斐波那契数列:

// 数列前两项是1,后面的每一项是前面两项的和
Fib(n) = {
  1, 1, 2, 3, 5, 8, 13, 21, ...}

用代码程序的话,描述(描述语言:C/C++)如下:

// 计算第count个斐波那契数列的元素
int Fib(const int& count)
{
    if(count < 1)
        return -1;  // 输入有误
    else if(count < 3)
        return 
### 如何在 Python 中实现类似于 LISP运算 为了实现在 Python 中模拟 LISP 运算的效果,可以采用多种方式。其中一种常见的方式是利用结构来解析并计算类似 LISP 表达式的字符串[^3]。 #### 方法一:使用自定义解释器 创建一个简单的基于的解释器能够有效地处理前缀表示法(即波兰表示法),这正是 LISP 所使用的表达形式之一。下面展示了一个基础版本: ```python def lisp_eval(expression): stack = [] tokens = expression.replace('(', ' ( ').replace(')', ' ) ').split() for token in reversed(tokens): # 反向遍历以适应的操作特性 if token.isdigit(): stack.append(int(token)) elif token.startswith('-') and token[1:].isdigit(): # 负数支持 stack.append(-int(token[1:])) elif token == '+': a, b = stack.pop(), stack.pop() stack.append(a + b) elif token == '-': a, b = stack.pop(), stack.pop() stack.append(b - a) # 注意减法顺序 elif token == '*': a, b = stack.pop(), stack.pop() stack.append(a * b) elif token == '/': a, b = stack.pop(), stack.pop() stack.append(float(b) / float(a)) # 防止整除 return stack[-1] print(lisp_eval("(+ (* (- 4 2) (+ 3 5)) (/ 8 2))")) # 输出应为 ((4-2)*(3+5)+(8/2))=20.0 ``` 此代码片段展示了如何构建一个简易版的支持加减乘除四种基本操作的小型 Lisp 解释器。注意这里对于负数进行了特殊处理,并且确保了除法返回浮点数值而非整数商值[^4]。 #### 方法二:借助第三方库 `sympy` 如果目标不仅仅是执行简单的数学运算而是更复杂的符号计算,则可以直接调用专门为此设计的强大工具——`Sympy` 库。该库不仅允许用户像编写标准 Python 语句那样输入公式,还提供了丰富的接口用于解决微积分、线性代数等领域内的复杂问题[^1]。 例如,在 Sympy 下面的例子实现了对含有未知量 x 和 y 的多项式求导功能: ```python from sympy import symbols, diff x, y = symbols('x y') expr = x**2 + 3*x*y - y**2 result = diff(expr, x) print(result) # 结果应该是 2*x + 3*y ``` 这种方法更适合于那些希望深入研究数学建模或科学计算的人群,因为它不仅仅局限于模仿 LISP 的语法风格,更重要的是继承和发展了其强大的逻辑推理能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值