【网络流24题】最长递增子序列(拆点+最大流)

题意

给定正整数序列 x 1 ∼ x n x_1 \sim x_n x1xn​​,以下递增子序列均为非严格递增。

  1. 计算其最长递增子序列的长度 s s s
  2. 计算从给定的序列中最多可取出多少个长度为 s s s 的递增子序列。
  3. 如果允许在取出的序列中多次使用 x 1 x_1 x1​​ 和 x n x_n xn​,则从给定序列中最多可取出多少个长度为 s s s 的递增子序列。

题解

如果每个点只能用一次,考虑拆点,变成前点和后点,前点向后点连一条容量为一条的边即可。
第一问直接dp。
第二问考虑,按照上面的方法拆点,如果 d p [ i ] = = 1 dp[i] == 1 dp[i]==1,则 s s s i i i连容量为1的边,若 d p [ i ] = = m x l e n dp[i] == mxlen dp[i]==mxlen,那么 i + n i +n i+n t t t连容量为1的边。并且每个 i i i i i i i + n i+n i+n容量为1的边。跑最大流。
第三问把有条件的边容量改为INF即可。

代码

#include<bits/stdc++.h>
using namespace std;
typedef double db;
typedef long long ll;
typedef unsigned long long ull;
const int nmax = 1e6+7;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3f;
const ull p = 67;
const ull MOD = 1610612741;
int n;
int a[nmax], dp[nmax];
int getdp() {
    dp[1] = 1;
    for(int i = 1; i <= n; ++i) {
        int tmp = 0;
        for(int j = 1; j < i; ++j) {
            if(a[j] <= a[i]) {
                tmp = max(tmp, dp[j]);
            }
        }
        dp[i] = tmp + 1;
    }
    int ans = 0;
    for(int i = 1; i <= n; ++i) {
        ans = max(ans, dp[i]);
    }
    return ans;
}
struct Dinic {
    int head[nmax], cur[nmax], d[nmax];
    bool vis[nmax];
    int tot, n, m, s, t, front, tail;
    int qqq[nmax];
    struct edge {
        int nxt, to, w, cap, flow;
    } e[nmax<<1];
    void init(int n) {
        this->n = n;
        memset(head, -1, sizeof head);
        memset(cur, 0, sizeof cur);
        memset(e,0,sizeof e);
        this->tot = 0;
    }
    int add_edge(int u, int v, int c) {
        int temp = tot;
        e[tot].to = v, e[tot].cap = c, e[tot].flow = 0;
        e[tot].nxt = head[u];
        head[u] = tot++;
        e[tot].to = u, e[tot].cap = c, e[tot].flow = c;
        e[tot].nxt = head[v];
        head[v] = tot++;
        return temp;
    }
    bool BFS() {
        for(int i = 0; i <= n; ++i) vis[i] = false;
        front = tail = 0;
        vis[s] = 1; d[s] = 0;
        qqq[tail++] = s;
        while (front < tail) {
            int u = qqq[front++];
            for (int i = head[u]; i != -1; i = e[i].nxt) {
                int v = e[i].to;
                if (!vis[v] && e[i].cap > e[i].flow) {
                    vis[v] = 1;
                    d[v] = d[u] + 1;
                    qqq[tail++] = v;
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int a) {
        if (x == t || a == 0) return a;
        int Flow = 0, f;
        for (int& i = cur[x]; i != -1; i = e[i].nxt) {
            int v = e[i].to;
            if (d[v] == d[x] + 1 && (f = DFS(v, min(a, e[i].cap - e[i].flow))) > 0) {
                Flow += f;
                e[i].flow += f;
                e[i ^ 1].flow -= f;
                a -= f;
                if (a == 0) break;
            }
        }
        return Flow;
    }
    int Maxflow(int s, int t) {
        this->s = s, this->t = t;
        int Flow = 0;
        while (BFS()) {
            for (int i = 0; i <= n; i++) cur[i] = head[i];
            Flow += DFS(s,INF);
        }
        return Flow;
    }
} dinic;
int main(){

    scanf("%d", &n);
    for(int i = 1; i <= n; ++i) {
        scanf("%d", &a[i]);
    }
    int s = 0,  t = 2 * n + 1;
    int mxlen = getdp();
    printf("%d\n", mxlen);
    
    dinic.init(t);
    for(int i = 1; i <= n; ++i) {
        dinic.add_edge(i, i + n, 1);
        if(dp[i] == 1) 
            dinic.add_edge(s, i, 1);
        if(dp[i] == mxlen)
            dinic.add_edge(i + n, t, 1);
        for(int j = i + 1; j <= n; ++j) {
            if(dp[j] == dp[i] + 1 && a[j] >= a[i])
                dinic.add_edge(i + n, j, 1);
        }
    }
    int mxflow = dinic.Maxflow(s, t);
    printf("%d\n", mxflow);

    dinic.init(t);
    for(int i = 1; i <= n; ++i) {
        if(dp[i] == 1) dinic.add_edge(s, i, i == 1? INF : 1);
        if(i == 1 || i == n) dinic.add_edge(i, i + n, INF);
        else dinic.add_edge(i, i + n, 1);
        if(dp[i] == mxlen) dinic.add_edge(i + n, t, i == n ? INF : 1);
        for(int j = 1; j <= n; ++j) {
            if(dp[j] == dp[i] + 1 && a[j] >= a[i])
                dinic.add_edge(i + n, j, 1);
        }
    }
    mxflow = dinic.Maxflow(s, t);
    printf("%d\n", mxflow);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值