基于网络流量的设备识别面临的挑战:
随着万物互联时代的到来
- 联网设备的种类更加丰富(工业控制设备、传感器、监控设备)
- 开发平台更加多样,甚至可以DIY自己的物联网设备
- 设备数量众多,单一漏洞往往能控制数以万计的设备
- 针对(物)联网设备的攻击更加频繁、危害更加广泛
- 迫切需要提出更加有效、准确的识别方法
设备识别的发展历程:
基于专家规则 --> 使用机器学习分类(朴素贝叶斯与随机森林)–> 自动化的规则生成
设备识别总结
- 局域网:
- 特征众多、需要依据性能、时间上的要求进行
- 基于统计特征的识别方法通用性较强,但时间跨度较大
- 基于协议特征的识别方法较为快速,但部分设备特征不足
- 多采用机器学习、针对物联网环境下的分类能力不足(不同于恶意样本家族分类等任务)
- 广域网:
- 主要采用应用层协议(banner,http回复)
- 多采用自然语言处理的方法
- 随着设备识别整体框架的完善,不少研究开始深耕于细分的研究方向: