LLM ReAct: 将推理和行为相结合的通用范式 学习记录

LLM ReAct是一种通用范式,让大型语言模型通过逻辑推理和行动达成目标。它适用于多种任务,如问答、决策等,提高了效率、效果和可信赖度。ReAct的特点包括简单、灵活、高性能和可控性,但依赖于人工提示和模型微调。落地应用时,需考虑选择合适的LLM、设计prompt、提供行为支持工具和评估方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LLM ReAct

什么是ReAct?

LLM ReAct 是一种将推理和行为相结合的通用范式,可以让大型语言模型(LLM)根据逻辑推理(Reason),构建完整系列行动(Act),从而达成期望目标。LLM ReAct 可以应用于多种语言和决策任务,例如问答、事实验证、交互式决策等,提高了 LLM 的效率、效果、可解释性和可信赖度

详见可以参见:LLM ReAct
在这里插入图片描述
论文中的Prompt示例
在这里插入图片描述

ReAct详细细节如下:

  • few-shot【少样本学习】提供一些包含交替出现的reasoning(推理)和actions(行动)例子,使得模型能够。
  • 在生成过程中,语言模型需要同时预测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

enjoy编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值