数据可视化中的变换、映射与降维技术
1. 流场可视化基础
在流场可视化工作中,大量研究致力于识别流场中的奇点(即流速为零的点),并描述这些点周围的旋转和压缩/膨胀情况。通常,存在一套计算雅可比矩阵不变量的数学体系。其中,有两个不变量尤为重要:
- 雅可比矩阵的迹(Trace) :记为 $Tr(J) = J_{11} + J_{22}$,它也是特征值之和。
- 雅可比矩阵的范数 :$Tr(J J^T) = \sum_{k,l} J_{kl}^2$,是特征值平方大小的总和。
- 雅可比矩阵的行列式 :它是特征值的乘积,对理解流场结构也很关键。
在位移场的情境下,我们常常关注逐点的总变形量,这可以通过对称化雅可比矩阵来捕捉:
$\varepsilon = \frac{1}{2}(J + J^T)$
$\varepsilon$ 的范数会产生标量,用于总结这种变形。
在流场中,向量场的涡度表示每个点的旋转速率。在二维情况下,涡度的计算公式为:
$\omega_z = \frac{\partial v_x}{\partial y} - \frac{\partial v_y}{\partial x}$
涡度通常被视为垂直于平面的向量,其方向(向内或向外)取决于符号。在三维情况下,涡度表示为速度的旋度:
$\omega = \nabla \times v$
该向量沿着旋转轴方向(根据右手定则确定)。在二维和三维情况下,涡度计算分别会得到另一个标量或向量场。结合极值分析或等值面等方法,标量不变量(
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



