43、深入解析SysTick定时器与银行化堆栈指针

深入解析SysTick定时器与银行化堆栈指针

1. SysTick定时器概述

SysTick定时器是微控制器中常用的一个定时器,它在系统中有着广泛的应用,如实时操作系统(RTOS)、定时测量等。SysTick->CALIB寄存器可提供实现10ms SysTick间隔所需的重载值,但许多微控制器没有该信息,TENMS位字段通常读为零。此外,可通过SysTick校准寄存器的第31位来判断参考时钟是否可用。不过,CMSIS - CORE提供软件变量(SystemCoreClock)获取时钟频率信息的方法更为灵活,且得到了大多数微控制器供应商的支持。在包含CMSIS - CORE头文件的软件项目中,SysTick异常处理程序名为“SysTick_Handler(void)”。

2. SysTick定时器的使用
2.1 在RTOS中使用SysTick定时器

许多RTOS本身就内置了对SysTick定时器的支持,除非要更改用于操作系统操作的特定设备外设定时器,否则通常无需进行软件更改。如需更多信息,可参考相关RTOS文档。

2.2 结合CMSIS - CORE使用SysTick定时器

CMSIS - CORE头文件提供了一个函数用于周期性SysTick中断生成,函数原型如下:

uint32_t SysTick_Config(uint32_t ticks);

该函数将SysTick中断间隔设置为“ticks”,使用处理器时钟启用计数器,并以最低异常优先级启用SysTick异常。例如,若时钟频率为30MHz,要

内容概要:本书《Pattern Recognition and Machine Learning》系统阐述了模式识别机器学习领域的基本理论方法,强调概率模型贝叶斯推理的核心地位。书中涵盖的主要内容包括概率分布、线性回归分类、神经网络、核方法、支持向量机、图模型、EM算法、变分推断、蒙特卡洛采样方法(如Metropolis-Hastings和混合蒙特卡洛)以及连续隐变量模型(如PCA独立成分分析)等。全书注重概念原理的深入解释,并融合大量实例图形辅助理解,同时提供配套软件资源用于实践。; 适合人群:具备一定数学基础(如线性代数、概率统计)和编程能力,面向高年级本科生、研究生及从事机器学习研究应用的科研人员;尤其适合希望从理论层面深入理解主流机器学习算法的学习者。; 使用场景及目标:①掌握机器学习中经典算法的概率建模思想数学推导过程;②理解图模型中的条件独立性判断、因子分解、消息传递机制;③学习复杂分布下的近似推断技术(如变分法MCMC)及其应用场景;④为后续研究深度学习、强学习或相关领域打下坚实的理论基础。; 阅读建议:此书理论性强,建议结合练习题进行深入学习,优先完成带“www”标记的在线习题以检验理解程度。对于重点章节(如第2章概率分布、第8章图模型、第11章蒙特卡洛方法),应仔细推导公式并尝试复现算法,配合Matlab工具包实践可显著提升学习效果。
内容概要:本文详细介绍了一个基于鱼鹰优算法(OOA)、反向传播神经网络(BP)和核密度估计(KDE)的多变量回归区间预测项目。该模型通过OOA优BP神经网络的权重参数,克服传统BP网络易陷入局部最优的问题,提升模型的全局搜索能力和预测精度;再结合KDE对预测结果进行概率密度建模,生成具有置信水平的预测区间,实现不确定性量。项目涵盖数据预处理、模型构建、优训练、区间生成、评价指标、可视GUI设计及系统部署全流程,并提供了完整的Python代码实现模块项目结构,适用于金融、医疗、能源、交通等多个高风险决策领域。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉神经网络算法的应用开发者、数据科学家及科研人员,尤其适合从事智能预测、风险评估等相关工作的1-5年经验技术人员; 使用场景及目标:①在高维复杂数据环境下构建高精度回归预测模型;②实现预测结果的不确定性量置信区间输出,提升决策安全性;③结合GUI系统实现交互式建模可视分析,支持实际业务系统的集成部署; 阅读建议:建议读者结合文档中的完整代码目录结构,动手复现模型流程,重点关注OOA优机制、KDE区间生成逻辑及GUI交互设计,同时注意超参数调优、模型泛评估系统部署优等关键环节,以全面掌握该集成模型的设计思想工程实践方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值