许多期刊发表的量子图像密码论文中,分析信息熵的时候用的是香农熵的公式,这不禁让人开始有点疑惑。因为,我们知道,香农熵一般用来是表示经典信息混乱程度的,为什么还可以用来表示量子信息混乱度。这不得不从香农熵和冯诺依曼上的公式上去推导,如果两者结果是一样的,那么可以说这两个公式是互通的。
香农熵
香农熵公式可以如上表示,信息 m i m_{i} mi及其相应的概率 p ( m i ) p(m_{i}) p(mi).
冯诺伊曼熵
其中 ρ \rho ρ表示的是密度算符,它可以如下计算得到:
也就是说,如果是单个量子态的话,那么其密度算符就是本身量子态的外积;如果是多个量子态形成的系统,则可以表示成多个量子态外积乘以相应的概率(幅度的平方)和。
根据线性代数知识,我们知道,求一个矩阵的迹就等于将该矩阵所有的特征值带符号相加,因此,冯诺依曼熵还可以表示成如下:
可以发现,当 ∣ I φ > |I_{\varphi}> ∣Iφ>是基态时,它的外积为单位矩阵。那么, ρ = ∑ p φ ∗ I \rho=\sum p_{\varphi}*I ρ=∑