牛顿迭代的应用和关键 迭代提升算子精度

牛顿迭代法是一种简单实用的求解方程近似解的方法,常用于工程实践中。尽管在理论学习时可能被认为收敛速度不快,但在实际应用中,通过适当变形和应用,如解决y=1/(√x)这类问题时,能够有效提升精度。关键步骤包括找到正确的迭代形式,如y²x-1=0,并进行相应的求导和迭代。理解并掌握这些要点对于优化计算效率至关重要。
摘要由CSDN通过智能技术生成

世界的本质是数学

牛顿迭代

牛顿迭代是非常简单而实用的技能,学习时候陷入误区,他不是只是众多可以用来逼近方程解的一个方法,同时也不是收敛不快的鸡肋方法。工程实践中很有用。

方法和关键点

  1. 原理和推导 ,太普遍不再详述,记得在函数“零点” f ( x k ) = 0 f(x_k) = 0 f(xk)=0,太勒Talor展开,求迭代xk即可通过方程 f ( x ) = f ( x k ) + f ′ ( x k ) ∗ ( x − x k ) = 0 f(x) = f(x_k) + f'(x_k)*(x-x_k)=0 f(x)=f(xk)+f(xk)(xxk)=0得到 x ( k + 1 ) = x k − f ( x k ) / f ′ ( x k ) x_(k+1) = x_k - f(x_k)/f'(x_k) x(k+1)=xkf(xk)/f(xk)这个关键迭代式子。
  2. 关键在于实际应用中,一般不能直接用,而是要变形后适用才可。
  3. 比如 y = 1 / ( x ) y=1/(\sqrt{x}) y=1/(x ),迭代提升精度。无脑求导y’,然后迭代上述式子,往往哭笑不得结果。
  4. 关键需要发现 y 2 x − 1 = 0 y^2 x -1= 0 y2x1=0这个步骤,然后 变形后,求导,迭代y值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值