计算方法——迭代法、牛顿法求解方程组

本文介绍了迭代法的概念,通过构造序列Xk+1 = p(Xk)来逼近方程f(x) = 0的根。以求解方程x*x*x - 3*x + 1 = 0为例,详细阐述了迭代法的步骤,并提供了具体代码实现。同时提到了牛顿法,利用导数信息Xk+1 = Xk - f(Xk)/f`(Xk),同样用于求解方程根,直至满足精度要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

迭代法:给定一个 方程 f(x) = 0 ,可以用多种方式来构造它的等价方程 x = p(x) ,取定根的一个近似值 X0,构造序列:

Xk+1 = p(Xk)      ( k = 0, 1 , 2 , .....).

迭代法算法 :

1. 给定初始值 X0 和精度要求 e ,以及最大循环次数 K 

2. 计算 Xk+1 = p(Xk) .

3. | Xk+1  -  Xk | < e ,如果成立则说明达到精度要求,输出 Xk+1 ,否则重复 2

具体例子:

求 x*x*x - 3*x + 1 = 0 , 在 0.5 附近的根,要求精确到第四位小数。

根据迭代法原理我们可以得到 : x = (x*x*x + 1)/3, 初始值为 X0 = 0.5 ,精度 e = 0.0001.

具体代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值