深度学习
阿唐明
time is money
https://www.zhihu.com/people/hirolin-89
展开
-
文本分类模型处理流程
文本分类模型处理流程1.样本整理2.数据预处理直接按照字符处理可以使用keras的apiTokenizer(char_level=True) 建立字符数字索引text_to_sequences() 将句子转成数字pad_sequences() 将句子填充到相同长度分词 jieba hanlp等(对于项目里特殊的词汇,可以手动加到分词词库里)用其他公司训练的词向量自定义词...原创 2020-02-16 12:24:31 · 663 阅读 · 0 评论 -
图片分类常见处理流程
图片分类常见处理流程样本来源竞赛官方提供爬虫(selenium+urllib2+可以搜图的网站)初始化webdrive,设置代理初始urllib2 设置代理driver =webdrive.FireFox()找到翻页按钮属性,模拟点击翻页解析页面提取图片链接元素,保存图片样本处理 归一化模型建立conv2->MaxPool->Conv2-&g...原创 2020-02-16 12:24:02 · 660 阅读 · 0 评论 -
深度学习常见概念和keras网络
深度学习常见概念和keras网络梯度下降loss function优化keras主要网络keras建立model1.梯度下降随机梯度下降小批量梯度下降带动量梯度下降 (更快的梯度下降)adagrad (调整学习率)rmsprop (优化adagrad学习率越来越低的问题)adam(优化rmsprop)2.深度学习中的loss functionmse 均方误差...原创 2020-02-16 12:23:24 · 172 阅读 · 0 评论 -
keras模型部署 flask & tfserving
keras训练后的模型可以用两种方法实现。利用keras的save方法保存模型成h5格式。利用python web框架加载h5模型并利用api请求对外提供http请求生成pb格式,利用tfserving加载pb模型。提供http请求。keras模型训练之后保存成h5格式部署。模型是一个文本分类模型1.模型保存# tb_callback = TensorBoard(log_dir='....原创 2020-01-02 20:34:26 · 1317 阅读 · 0 评论 -
模型实践(二)bert 中文语料分类
1.下载bert源代码和中文预训练模型bert代码模型下载Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters2.准备样本依旧采用上一节中使用的ai挑战赛用户评论信息。对于自己使用的场景按照对应的格式处理好即可。例如这边样本格式如下(正文+标签):(说明 此处用的标签...原创 2019-11-02 17:51:59 · 1449 阅读 · 1 评论 -
模型实践(一)RNN LSTM 中文分类
对之前一节部分进行实践,使用keras进行实现,keras关于循环神经网络有多个方法。https://keras.io/zh/layers/recurrent/SimpleRNNLSTM+CNN样本使用ai挑战赛用户评论信息,这里仅用验证集的数据(数据量少一些,运行快一些)标签取了用户消费后感受字段。该字段标签有2'正面情感', 1'中性情感', -1'负面情感', 0'情感倾向未提...原创 2019-10-13 21:06:32 · 738 阅读 · 0 评论 -
深度学习之Dropout层
Dropout层过程相当于在一个大的网络模型中每次随机小模型,类似在模拟集成学习。避免过拟合例如在图示中,通过Dropout层,每次选择网络中的一部分继续计算传递。实现可以使用keras Dropout层实现,这里自定义一个方法。import numpy as np#X输入 drop_probability丢失的概率def dropout(X, drop_probability...原创 2019-03-16 22:38:16 · 3009 阅读 · 0 评论 -
深度学习笔记之RCNN、Fast-R-CNN、Faster-R-CNN
利用神经网络进行目标检测,目前已经有很多方法,从RCNN到Fast-R-CNN再到Faster-R-CNN。YOLO SSD等等。本文主要记录一下RCNN、Fast-R-CNN、Faster-R-CNN的学习。RCNN在原始图片上利用RIO(Regions of Interest )进行处理。在原始图片上使用selective search 搜索待检测区域,第一步是提取到2000个区域。...原创 2019-03-23 19:42:54 · 386 阅读 · 0 评论 -
自然语言几个重要的模型
自然语言几个重要的模型。循环神经网络 (序列模型序列依赖问题)双向循环神经网络(输入序列正向和反向依赖问题)深度双向循环神经网络LSTM(梯度消失问题)GRUtext CNN(一维卷积和池化)seq2seq(序列到序列问题)Attention(decoder对encoder输入序列注意力问题,从输入获取可用信息)Transform(对输入的序列分成q检索项 k键项 v值项进行计...原创 2019-10-07 15:41:22 · 740 阅读 · 0 评论