深度学习之Dropout层

Dropout层是深度学习中防止过拟合的一种有效方法,它通过在训练过程中随机关闭一部分神经元来模拟集成学习。在每个训练迭代中,Dropout层会选择网络的一部分继续计算,以此增加模型的泛化能力。实现上,可以利用Keras库中的Dropout层,自定义方法进行操作。通常,Dropout层会放在全连接层和激活函数之间,且靠近输出层的Dropout比例较小,以保护重要参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dropout层
过程

相当于在一个大的网络模型中每次随机小模型,类似在模拟集成学习。
避免过拟合
例如在图示中,通过Dropout层,每次选择网络中的一部分继续计算传递。
在这里插入图片描述

实现

可以使用keras Dropout层实现,这里自定义一个方法。

import numpy as np
#X输入 drop_probability丢失的概率
def dropout(X, drop_probability):  
    keep_probability = 1 - drop_probability
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值