自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

ehui的博客

技术文档

  • 博客(23)
  • 资源 (1)
  • 收藏
  • 关注

转载 值得记录的文章

使用TensorRT对yolov5进行部署(基于python,超详细)

2024-05-22 14:13:27 37

原创 tesseract-ocr安装使用避坑指南

2.安装完以后,要在site-packages—>pytesseract.py中修改tesseract.exe地址为你的实际地址;官网的下载贼慢,github的找不到,百度搜吧。4.安装语言包参考这篇。

2024-05-22 14:07:22 399

原创 PYQT5实现图片显示、通过滚轮缩放图片、通过鼠标拖动图片移动,搞懂所有细节

在案例中,如果窗口已打开图片,再次打开图片时,会弹出图片选择框,图片选择框会遮挡图片显示控件,这个操作将触发paintEvent事件。如果设置图片左上角的点QPoint为(0,0)倒没什么问题,一旦不是(0,0)将会出错,因为在其它分支会重新计算QPoint。中,self.point不是图片显示的左上角真实值,需要除以scale才是,形如self.point / self.scale,参考文献中似乎也未留意到这一点。2.缩放:如鼠标点在图上,则根据这一点顶点缩放,否则按图此前的左上角点进行缩放。...

2022-08-31 14:42:19 7750 9

原创 逻辑回归分类器的相关资料

逻辑回归是分类当中极为常用的手段,因此,掌握其内在原理是非常必要的。方向导数与梯度极大似然估计逻辑回归的python实现

2022-05-26 21:03:59 362

原创 对于SPP(空间金字塔池化)、RPN(区域候选网络)与回归器的理解

边框回归取值的含义原文链接:https://blog.csdn.net/shenxiaolu1984/article/details/51066975位置精修目标检测问题的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小。故需要一个位置精修步骤。回归器对每一类目标,使用一个线性脊回归器进行精修。正则项λ=10000λ=10000。输入为深度网络pool5层的4096维特征,输出为xy方向的缩放和平移。训练样本判定为本类的候选框中,和真值重叠面积大于0.6的

2020-07-16 11:32:01 650

原创 Keras多GPU训练问题解决汇总-多GPU-速度慢-单GPU无法加载权重文件-pretrain问题解决

我使用的是qqwweee/keras-yolo3的代码,代码地址目前用于做某个设备的工业化检测,实现召回率98%以上,误检在2%左右,已满足应用需求。解决了4个问题:1.多GPU训练问题;2.多GPU训练速度慢的问题;3.单GPU无法加载多GPU跑出的加载权重问题;4.Pretrain训练收敛速度慢的问题。1.多GPU训练问题参考的是这篇文章①首先在train....

2019-10-30 15:02:32 4190 7

转载 彻底理解HOG

OpenCV HOGDescriptor 参数图解https://blog.csdn.net/raodotcong/article/details/6239431计算HOG矢量特征数OPENCV3之SVM+HOG打开的正确姿势有这三篇就足够理解HOG了

2019-03-20 16:13:44 395

原创 win10-GTX1080-CUDA10-python3.6-tensorflow-gpu完全安装教程亲测有效已安装多台服务器

本文根据win10+cuda10+tensorflow-gpu最新安装教程进行安装,在此表示感谢。对文章中未提到的一些细节进行了补充。win10版本号显卡及驱动版本下载Visual Studio 2017社区版并以最简方式安装,不要选择任何模块。占用大概600M空间。安装Anaconda3-5.2.0-Windows-x86_64.exe,下载地址安装pychar...

2019-03-01 10:08:11 2068

转载 《Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift》阅读笔记与实现

此文章为转载,原文地址在此  今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他们的效果超越了人类水平,下面将分两期介绍两者的算法细节。  这次先讲Google的这篇《Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift》,主要是...

2018-08-20 23:13:23 198

转载 TensorFlow中run与eval的区别

看一个例子:import tensorflow as tfimport numpy as npwith tf.Session() as test: a = tf.random_normal([1], mean=1, stddev=4, seed = 1) b = tf.random_normal([1], mean=1, stddev=4, seed = 1) c =...

2018-05-10 14:25:13 2118

原创 吴恩达深度学习课程作业:Class 4 Week 1 Convolution model - Application 避坑指南

先看代码,如果tensorflow版本不是1.2.0,在执行foward propagation那部分的代码时,有可能你的代码都是正确的,但是你的运行结果却与notebook上的expected output的结果不一样。有一个解决办法:那就是换成老版本的tensorflow。在1.2.0以上的版本怎么能让迭代收敛呢? 把第208行注释掉就行了。用1.8版本的tensorflow也很难收敛,迭代1...

2018-05-07 17:03:32 1782 17

原创 如何打开ipynb后缀的文件

将包含ipynb文件的文件夹assignment4-1拷到C:\Users\pestzhang下,双击Jupyter Notebook,浏览器中自动打开http://localhost:8888/tree,找到assignment4-1文件夹,双击Convolution_model_StepByStep.ipynb文件即可打开,可正常显示所有图片。...

2018-04-28 20:49:39 3090

原创 【原创】对残差网络ResNet的理解

我没有看原文,近期准备好好看一下:Deep Residual Learning for Image Recognition附上论文详细解读对ResNet的理解主要来自吴恩达的课件、CNN入门讲解:什么是残差网络Resnet(视频)以及CSDN上相关资料。深度网络的好处:1.特征的等级随着网络深度的加深而变高;2.很深的深度使得网络具有极强大的表达能力。但深度网络会产生两个问题:1.梯度消失及梯度爆...

2018-04-27 17:16:50 4575 1

原创 深度学习模型容量选择与正则化的意义

在使用深度学习算法时,我们采样得到训练集,然后挑选参数去降低训练集误差。用训练好的模型对测试集进行验证,以得到泛化(测试)误差。在这个过程中,泛化误差期望会大于或等于训练误差期望。我们应朝以下方面努力,以提高算法精度:(1)降低训练误差;(2)缩小训练误差和泛化误差的差距。 这两个因素对应机器学习的两个主要挑战:欠拟合与过拟合。欠拟合是指模型不能在训练集上获得足够低的误差,而过...

2018-04-18 14:55:46 3184 1

转载 深度学习权重参数初始化要点

今天做吴恩达深度学习第1课第4周的编程作业,参数初始化按照指南中“- Use random initialization for the weight matrices. Use np.random.rand(shape) * 0.01. ”进行操作,但计算无论怎样也不收敛:Cost after iteration 0: 0.693148Cost after iteration 100: 0.67...

2018-04-16 16:27:11 6160

原创 深度学习与支持向量机的分类原理异同

深度学习利用神经网络对数据进行分类,我们来看看其分类的本质是什么。下面我们来看一个2层的神经网络中的第1层:输入a可以看作三维空间的一个点,输出z可以看作两维空间的点。从输入a到输出z,首先输入向量a左乘了一个变换矩阵w,经历了坐标变换被压缩了一维,然后再进行了一个sigmoid函数映射,实质上是对二维空间进行了扭曲(非线性化)。然后再进行一个二维坐标变换和sigmoid映射,最后输出结果。很明显...

2018-03-29 11:17:05 9174 3

原创 奇异值分解(SVD)原理

在主成分分析(PCA)中,需要求协方差矩阵的特征值λ与特征向量V,如果矩阵较大,计算起来太消耗内存。而奇异值分解可以不通过协方差矩阵获取特征值λ与特征向量V。奇异值分解方法见:奇异值分解(SVD)原理与在降维中的应用SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:A=UΣVT其中U是一个m×m的矩阵,...

2018-03-23 17:06:35 637

原创 PCA主成分分析与K-L变换学习历程

PCA可以用于数据降维压缩。本质上是对一组多维数据进行坐标变换,从标准坐标变换到新的坐标系下,使得主要坐标轴上的分量的方差最大化,然后把分量方差较小的轴置零,达到降维的效果。对于图像处理来说,一组相似的m×n的图像在标准坐标系下有m×n维,因此大部分维度是相关性很强的。现在要找到一个正交坐标系,使所有图像对应的向量都尽量能分解在几个主成分坐标轴上(主成分坐标轴意味着向量在上面的分量方差最大),即K...

2018-03-22 17:24:37 2284

原创 回调函数的参数传输问题

做强光特征分析,需要在一个视频中画多个框,而且是在视频中间出现强光时画框。因此画框的回调函数中有一些标志鼠标动作的参数必须传到主程序中来。如下我用了flag列表,才将参数传出来。如果简单的定义全局变量,这些参数是传不出来的,不知道为什么。程序如下:import numpy as npimport cv2dotLoc = [[col for col in range(4)] for row i...

2018-03-17 00:51:11 9072 1

转载 python图像处理

pycharm已经安装了cv2库,直接import cv2即可。测试代码:import cv2import numpy as npimg = cv2.imread('D:\lena.jpg')cv2.imshow('lena",img)cv2.waitKey(10000)CV2主要函数介绍scikit-image库介绍cv2.VideoCapture(0) 读取笔记本内置摄像头视频cv2....

2018-03-15 16:30:51 618

原创 Anaconda3 + PyCharm上配置 PyQt4 和 图片标注工具labelImg

综合网上资料,记录配置PyQt4的过程,亲测有效。1. 按照常规方法安装Anaconda3,更新python版本为3.62. 下载PyQt4,地址为:点击打开链接我的电脑为64位,选择 PyQt4‑4.11.4‑cp36‑cp36m‑win_amd64.whl3. 将下载的PyQt4-4.11.4-cp35-cp35m-win_amd64.whl文件放置到英文路径下,例如:C:\Anaconda3...

2018-01-28 07:59:14 1078

转载 从CNN到RCNN

1.首先是图像分割,初步筛选出要提取特征的物体。不用滑窗,参考文章:R-CNN之前的准备:Efficient Graph-Based Image Segmentation这篇论文的思想是把图像看作为一个图(graph),图中的节点就是图像中的像素,而权重就是相邻像素之间的差异性。然后通过贪心算法不断融合差异性小的像素或者区域为一个区域,将图最后划分为数个区域(regions或者是compo

2017-09-14 15:51:04 1544

原创 SVM的学习历程

以 支持向量机通俗导论为主线进行学习。碰到的第一个问题:带有不等式约束的拉格朗日优化方法。浅谈最优化问题的KKT条件 约束优化方法之拉格朗日乘子法与KKT条件  形象讲述了KKT条件的来由。拉格朗日对偶

2017-08-15 17:46:58 593

吴恩达深度学习第1课第3周编程作业

包含planar_utils.py , testCases.py和assignment3.ipynb,有这3个文件就可以顺利完成作业了。

2018-04-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除