tesseract-ocr安装使用避坑指南 2.安装完以后,要在site-packages—>pytesseract.py中修改tesseract.exe地址为你的实际地址;官网的下载贼慢,github的找不到,百度搜吧。4.安装语言包参考这篇。
PYQT5实现图片显示、通过滚轮缩放图片、通过鼠标拖动图片移动,搞懂所有细节 在案例中,如果窗口已打开图片,再次打开图片时,会弹出图片选择框,图片选择框会遮挡图片显示控件,这个操作将触发paintEvent事件。如果设置图片左上角的点QPoint为(0,0)倒没什么问题,一旦不是(0,0)将会出错,因为在其它分支会重新计算QPoint。中,self.point不是图片显示的左上角真实值,需要除以scale才是,形如self.point / self.scale,参考文献中似乎也未留意到这一点。2.缩放:如鼠标点在图上,则根据这一点顶点缩放,否则按图此前的左上角点进行缩放。...
对于SPP(空间金字塔池化)、RPN(区域候选网络)与回归器的理解 边框回归取值的含义原文链接:https://blog.csdn.net/shenxiaolu1984/article/details/51066975位置精修目标检测问题的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小。故需要一个位置精修步骤。回归器对每一类目标,使用一个线性脊回归器进行精修。正则项λ=10000λ=10000。输入为深度网络pool5层的4096维特征,输出为xy方向的缩放和平移。训练样本判定为本类的候选框中,和真值重叠面积大于0.6的
Keras多GPU训练问题解决汇总-多GPU-速度慢-单GPU无法加载权重文件-pretrain问题解决 我使用的是qqwweee/keras-yolo3的代码,代码地址目前用于做某个设备的工业化检测,实现召回率98%以上,误检在2%左右,已满足应用需求。解决了4个问题:1.多GPU训练问题;2.多GPU训练速度慢的问题;3.单GPU无法加载多GPU跑出的加载权重问题;4.Pretrain训练收敛速度慢的问题。1.多GPU训练问题参考的是这篇文章①首先在train....
彻底理解HOG OpenCV HOGDescriptor 参数图解https://blog.csdn.net/raodotcong/article/details/6239431计算HOG矢量特征数OPENCV3之SVM+HOG打开的正确姿势有这三篇就足够理解HOG了
win10-GTX1080-CUDA10-python3.6-tensorflow-gpu完全安装教程亲测有效已安装多台服务器 本文根据win10+cuda10+tensorflow-gpu最新安装教程进行安装,在此表示感谢。对文章中未提到的一些细节进行了补充。win10版本号显卡及驱动版本下载Visual Studio 2017社区版并以最简方式安装,不要选择任何模块。占用大概600M空间。安装Anaconda3-5.2.0-Windows-x86_64.exe,下载地址安装pychar...
《Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift》阅读笔记与实现 此文章为转载,原文地址在此 今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他们的效果超越了人类水平,下面将分两期介绍两者的算法细节。 这次先讲Google的这篇《Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift》,主要是...
TensorFlow中run与eval的区别 看一个例子:import tensorflow as tfimport numpy as npwith tf.Session() as test: a = tf.random_normal([1], mean=1, stddev=4, seed = 1) b = tf.random_normal([1], mean=1, stddev=4, seed = 1) c =...
吴恩达深度学习课程作业:Class 4 Week 1 Convolution model - Application 避坑指南 先看代码,如果tensorflow版本不是1.2.0,在执行foward propagation那部分的代码时,有可能你的代码都是正确的,但是你的运行结果却与notebook上的expected output的结果不一样。有一个解决办法:那就是换成老版本的tensorflow。在1.2.0以上的版本怎么能让迭代收敛呢? 把第208行注释掉就行了。用1.8版本的tensorflow也很难收敛,迭代1...
如何打开ipynb后缀的文件 将包含ipynb文件的文件夹assignment4-1拷到C:\Users\pestzhang下,双击Jupyter Notebook,浏览器中自动打开http://localhost:8888/tree,找到assignment4-1文件夹,双击Convolution_model_StepByStep.ipynb文件即可打开,可正常显示所有图片。...
【原创】对残差网络ResNet的理解 我没有看原文,近期准备好好看一下:Deep Residual Learning for Image Recognition附上论文详细解读对ResNet的理解主要来自吴恩达的课件、CNN入门讲解:什么是残差网络Resnet(视频)以及CSDN上相关资料。深度网络的好处:1.特征的等级随着网络深度的加深而变高;2.很深的深度使得网络具有极强大的表达能力。但深度网络会产生两个问题:1.梯度消失及梯度爆...
深度学习模型容量选择与正则化的意义 在使用深度学习算法时,我们采样得到训练集,然后挑选参数去降低训练集误差。用训练好的模型对测试集进行验证,以得到泛化(测试)误差。在这个过程中,泛化误差期望会大于或等于训练误差期望。我们应朝以下方面努力,以提高算法精度:(1)降低训练误差;(2)缩小训练误差和泛化误差的差距。 这两个因素对应机器学习的两个主要挑战:欠拟合与过拟合。欠拟合是指模型不能在训练集上获得足够低的误差,而过...
深度学习权重参数初始化要点 今天做吴恩达深度学习第1课第4周的编程作业,参数初始化按照指南中“- Use random initialization for the weight matrices. Use np.random.rand(shape) * 0.01. ”进行操作,但计算无论怎样也不收敛:Cost after iteration 0: 0.693148Cost after iteration 100: 0.67...
深度学习与支持向量机的分类原理异同 深度学习利用神经网络对数据进行分类,我们来看看其分类的本质是什么。下面我们来看一个2层的神经网络中的第1层:输入a可以看作三维空间的一个点,输出z可以看作两维空间的点。从输入a到输出z,首先输入向量a左乘了一个变换矩阵w,经历了坐标变换被压缩了一维,然后再进行了一个sigmoid函数映射,实质上是对二维空间进行了扭曲(非线性化)。然后再进行一个二维坐标变换和sigmoid映射,最后输出结果。很明显...
奇异值分解(SVD)原理 在主成分分析(PCA)中,需要求协方差矩阵的特征值λ与特征向量V,如果矩阵较大,计算起来太消耗内存。而奇异值分解可以不通过协方差矩阵获取特征值λ与特征向量V。奇异值分解方法见:奇异值分解(SVD)原理与在降维中的应用SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:A=UΣVT其中U是一个m×m的矩阵,...
PCA主成分分析与K-L变换学习历程 PCA可以用于数据降维压缩。本质上是对一组多维数据进行坐标变换,从标准坐标变换到新的坐标系下,使得主要坐标轴上的分量的方差最大化,然后把分量方差较小的轴置零,达到降维的效果。对于图像处理来说,一组相似的m×n的图像在标准坐标系下有m×n维,因此大部分维度是相关性很强的。现在要找到一个正交坐标系,使所有图像对应的向量都尽量能分解在几个主成分坐标轴上(主成分坐标轴意味着向量在上面的分量方差最大),即K...