奇异值分解(SVD)原理

在主成分分析(PCA)中,需要求协方差矩阵的特征值λ与特征向量V,如果矩阵较大,计算起来太消耗内存。而奇异值分解可以不通过协方差矩阵获取特征值λ与特征向量V。

奇异值分解方法见:奇异值分解(SVD)原理与在降维中的应用

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:A=UΣVT

其中U是一个m×m的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足UTU=I,VTV=I,UTU=I,VTV=I。

主成分分析(PCA)原理总结中,我们讲到要用PCA降维,需要找到样本协方差矩阵的最大的d个特征向量,然后用这最大的d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵,当样本数多、样本特征数也多的时候,这个计算量是很大的。

注意到SVD可以得到协方差矩阵最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵,也能求出我们的右奇异矩阵VT。也就是说,我们的PCA算法可以不用做特征分解,而是用SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们认为的暴力特征分解。

其中奇异值的平方即A的协方差矩阵的特征值,V是一个n×n的矩阵,它是A的协方差矩阵的特征向量。证明见奇异值分解(SVD)原理与在降维中的应用

简而言之,当数据量很大时,PCA中计算原始数据A的协方差矩阵的特征矩阵很麻烦,不如计算奇异值及其右奇异矩阵VT来得简单方便。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值