百面机器学习 #2 模型评估:07 过拟合和欠拟合及其常用解决方法

如何有效地识别“过拟合”和“欠拟合”现象,并有针对性地进行模型调整,是不断改进机器学习模型的关键。

  • 过拟合
    • 模型对于训练数据拟合呈过当的情况
    • 反映到评估指标上,就是模型在训练集上的表现很好,但在测试集和新数据上的表现较差
    • 模型过于复杂,容易把噪声数据的特征也学习到模型中,导致模型泛化能力下降,在后期应用过程中很容易输出错误的预测结果
  • 欠拟合
    • 模型在训练和预测时表现都不好的情况
    • 没有很好地捕捉到数据的特征,不能够很好地拟合数据

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QlF1vYi5-1590144657074)(%E7%99%BE%E9%9D%A2%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/image-20200522183829454.png)]

7.1 降低“过拟合”风险的方法

(1)获得更多的训练数据
  • 使用更多的训练数据是解决过拟合问题最有效的手段
    • 因为更多的样本能够让模型学习到更多更有效的特征,减小噪声的影响
  • 直接增加实验数据一般是很困难的,可以通过一定的规则来扩充训练数据
    • 在图像分类的问题上,可以通过图像的平移、旋转、缩放等方式扩充数据
    • 更进一步地,可以使用生成式对抗网络来合成大量的新训练数据
(2)降低模型复杂度
  • 在数据较少时,模型过于复杂是产生过拟合的主要因素,适当降低模型复杂度可以避免模型拟合过多的采样噪声。
    • 在神经网络模型中减少网络层数、神经元个数等
    • 在决策树模型中降低树的深度、进行剪枝等
(3)正则化方法
  • 给模型的参数加上一定的正则约束,比如将权值的大小加入到损失函数中

    • 以L2正则化为例,这样,在优化原来的目标函数C0的同时,也能避免权值过大带来的过拟合风险

    C = C 0 + λ 2 n ⋅ ∑ i w i 2 C=C_0+\frac{\lambda}{2n}\cdot\sum_iw_i^2 C=C0+2nλiwi2

(4)集成学习方法
  • 把多个模型集成在一起,来降低单一模型的过拟合风险
    • 如Bagging方法

7.2 降低“欠拟合”风险的方法

(1)添加新特征
  • 当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合
  • 通过挖掘“上下文特征”“ID类特征”“组合特征”等新的特征,往往能够取得更好的效果
    • 如因子分解机、梯度提升决策树、Deep-crossing等都可以成为丰富特征的方法
(2)增加模型复杂度
  • 增加模型的复杂度可以使模型拥有更强的拟合能力
    • 在线性模型中添加高次项
    • 在神经网络模型中增加网络层数或神经元个数等
(3)减小正则化系数
  • 正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减小正则化系数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值