[NOIP2012 普及组] 摆花
题目描述
小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m m m 盆。通过调查顾客的喜好,小明列出了顾客最喜欢的 n n n 种花,从 1 1 1 到 n n n 标号。为了在门口展出更多种花,规定第 i i i 种花不能超过 a i a_i ai 盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。
试编程计算,一共有多少种不同的摆花方案。
输入格式
第一行包含两个正整数 n n n 和 m m m,中间用一个空格隔开。
第二行有 n n n 个整数,每两个整数之间用一个空格隔开,依次表示 a 1 , a 2 , ⋯ , a n a_1,a_2, \cdots ,a_n a1,a2,⋯,an。
输出格式
一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对 1 0 6 + 7 10^6+7 106+7 取模的结果。
样例 #1
样例输入 #1
2 4
3 2
样例输出 #1
2
提示
【数据范围】
对于 20 % 20\% 20% 数据,有 0 < n ≤ 8 , 0 < m ≤ 8 , 0 ≤ a i ≤ 8 0<n \le 8,0<m \le 8,0 \le a_i \le 8 0<n≤8,0<m≤8,0≤ai≤8。
对于 50 % 50\% 50% 数据,有 0 < n ≤ 20 , 0 < m ≤ 20 , 0 ≤ a i ≤ 20 0<n \le 20,0<m \le 20,0 \le a_i \le 20 0<n≤20,0<m≤20,0≤ai≤20。
对于 100 % 100\% 100% 数据,有 0 < n ≤ 100 , 0 < m ≤ 100 , 0 ≤ a i ≤ 100 0<n \le 100,0<m \le 100,0 \le a_i \le 100 0<n≤100,0<m≤100,0≤ai≤100。
NOIP 2012 普及组 第三题
思路: 动态规划,设dp[i][j]为用前 i 种花摆放 j 朵时的方案数,a[i]为第 i 种花最多放几朵,则dp[i][j]的值为dp[i - 1][j] + dp[i - 1][j - 1] + … + dp[i - 1][j - min(j, a[i])]
代码:
#include<bits/stdc++.h>
using namespace std;
int n, m, a[105], dp[105][105];
int main(){
cin >> n >> m;
for(int i = 1; i <=n ; i++) cin >> a[i];
dp[0][0] = 1;
for(int i = 1; i <= n; i++){
for(int j = 0; j <= m; j++){
for(int k = 0; k <= min(j, a[i]); k++){
dp[i][j] = (dp[i][j] + dp[i - 1][j - k]) % 1000007;
}
}
}
cout << dp[n][m] << endl;
return 0;
}