【模板】floyd
题目背景
模板题,无背景
题目描述
给出n个点,m条边的无向图,求每个点到其他点的距离之和%998244354的值
输入格式
第一行两个数n,m含义如上
从第二行开始,共m行,每行三个数x,y,l,代表从x到y点的长度为l
输出格式
n行,每行一个数,第i行代表点i到其他点的距离之和
样例 #1
样例输入 #1
2 1
1 2 4
样例输出 #1
4
4
样例 #2
样例输入 #2
4 5
1 2 1
1 3 2
2 3 2
3 4 3
2 4 4
样例输出 #2
8
7
7
12
提示
模板题,保证图联通
n<=500
m<=10000
1<=x,y<=n
l<=1e9
思路: floyd模板题,设dp[i][j]为点 i 到点 j 的最短路,则状态转移方程
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j])
代码:
#include<bits/stdc++.h>
using namespace std;
long int n, m, dp[500][500], ans[500];
int main(){
cin >> n >> m;
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
if(!dp[i][j] && i != j) dp[i][j] = 0x3f3f3f3f;
}
}
for(int i = 0; i < m; i++){
long int a, b, c;
cin >> a >> b >> c;
dp[a - 1][b - 1] = min(dp[a - 1][b - 1], c);
dp[b - 1][a - 1] = min(dp[b - 1][a - 1], c);
}
for(int k = 0; k < n; k++){
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);
}
}
}
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
ans[i] = (ans[i] + dp[i][j]) % 998244354;
}
}
for(int i = 0; i < n; i++){
cout << ans[i] << endl;
}
return 0;
}