【C++】洛谷U80592 【模板】floyd

9 篇文章 0 订阅

【模板】floyd

题目背景

模板题,无背景

题目描述

给出n个点,m条边的无向图,求每个点到其他点的距离之和%998244354的值

输入格式

第一行两个数n,m含义如上
从第二行开始,共m行,每行三个数x,y,l,代表从x到y点的长度为l

输出格式

n行,每行一个数,第i行代表点i到其他点的距离之和

样例 #1

样例输入 #1

2 1
1 2 4

样例输出 #1

4
4

样例 #2

样例输入 #2

4 5
1 2 1
1 3 2
2 3 2
3 4 3
2 4 4

样例输出 #2

8
7
7
12

提示

模板题,保证图联通
n<=500
m<=10000
1<=x,y<=n
l<=1e9

思路: floyd模板题,设dp[i][j]为点 i 到点 j 的最短路,则状态转移方程

dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j])

代码:

#include<bits/stdc++.h>
using namespace std;
long int n, m, dp[500][500], ans[500];
int main(){
    cin >> n >> m;
    for(int i = 0; i < n; i++){
        for(int j = 0; j < n; j++){
            if(!dp[i][j] && i != j) dp[i][j] = 0x3f3f3f3f;
        }
    }
    for(int i = 0; i < m; i++){
        long int a, b, c;
        cin >> a >> b >> c;
        dp[a - 1][b - 1] = min(dp[a - 1][b - 1], c);
        dp[b - 1][a - 1] = min(dp[b - 1][a - 1], c);
    }
    for(int k = 0; k < n; k++){
        for(int i = 0; i < n; i++){
            for(int j = 0; j < n; j++){
                dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);
            }
        }
    }
    for(int i = 0; i < n; i++){
        for(int j = 0; j < n; j++){
            ans[i] = (ans[i] + dp[i][j]) % 998244354;
        }
    }
    for(int i = 0; i < n; i++){
        cout << ans[i] << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值