floyd,dijkstra算法分析

floyd

1.问题

用Floyd算法求解下图各个顶点的最短距离。

2.解析

从任意节点i到任意节点j的最短路径不外乎2种可能:1)直接从节点i到节点j,2)从节点i经过若干个节点k到节点j。所以,我们假设dis(i,j)为节点i到节点j的最短路径的距离,对于每一个节点k,我们检查dis(i,k) + dis(k,j) < dis(i,j)是否成立,如果成立,证明从节点i到节点k再到节点j的路径比节点i直接到节点j的路径短,我们便设置dis(i,j) = dis(i,k) + dis(k,j),这样一来,当我们遍历完所有节点k,dis(i,j)中记录的便是节点i到节点j的最短路径的距离。

3.设计

for k in range(n):
for i in range(n):
for j in range(n):
graph[i][j] = min(graph[i][j], graph[i][k] + graph[k][j])

4.分析

[算法复杂度推导]

5.源码

[github源码地址]


dijkstra

1.问题

用dijkstra算法求解下图各个顶点的最短距离。

2.解析

1.将所有的顶点分为两部分:已知最短路程的顶点集合 P 和未知最短路径的顶点集合 Q。最开始,已知最短路径的顶点集合 P 中只有源点一个顶点。这里用一个 visited[ i ]数组来记录哪些点在集合 P 中。例如对于某个顶点 i,如果 visited[ i ]为 1 则表示这个顶点在集合 P 中,如果 visited[ i ]为 0 则表示这个顶点在集合 Q 中;
2.设置源点 s 到自己的最短路径为 0 即 dis = 0。若存在源点有能直接到达的顶点 i,则把 dis[ i ]设为 G[s][ i ]。同时把所有其它(源点不能直接到达的)顶点的最短路径为设为 ∞;
3.在集合 Q 的所有顶点中选择一个离源点 s 最近的顶点 u(即 dis[u] 最小)加入到集合 P。并考察所有以点 u 为起点的边,对每一条边进行松弛操作。例如存在一条从 u 到 v 的边,那么可以通过将边 u->v 添加到尾部来拓展一条从 s 到 v 的路径,这条路径的长度是 dis[u] + G[u][v]。如果这个值比目前已知的 dis[v] 的值要小,我们可以用新值来替代当前 dis[v] 中的值;
4.重复第 3 步,如果集合 Q 为空,算法结束。最终 dis 数组中的值就是源点到所有顶点的最短路径
3.设计
S ←{s}
dist【s, s】 ←0
for vi∈ V-{s} do
dist【s,vi】← wv(s,vi)
(when v not found,dist【s,v】←oo)
while V- S ≠Ø do
find min dist[s,vi]from the set V-S
S<- S U {vj}
for vi∈ V- S do
if dist[s,vj]+wj,i<dist[s,vi] then
dist【s,vi】←dist【s,vj;】+wi,j

4.分析

O(N2)

5.源码

[github源码地址]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值