快速幂
philophobia
这个作者很懒,什么都没留下…
展开
-
H - 3的幂的和(快速幂)
求:3^0 + 3^1 +...+ 3^(N) mod 1000000007 Input 输入一个数N(0 <= N <= 10^9) Output 输出:计算结果 Sample Input3 Sample Output40 要用到的知识:**逆元: 若对于数字A,C 存在X,使A * X = 1 (mod C) ,那么称X为 A 对C的乘法逆元。 理论依据: F /原创 2017-08-11 10:19:12 · 503 阅读 · 0 评论 -
整数快速乘法/快速幂+矩阵快速幂
快速乘法通常有两类应用:一、整数的运算,计算(a*b) mod c 二、矩阵快速乘法 一、整数运算:(快速乘法、快速幂)先说明一下基本的数学常识:(a*b) mod c == ( (a mod c) * (b mod c) ) mod c //这最后一个mod c 是为了保证结果不超过c对于2进制,2n可用1后接n个0来表示、对于8进制,可用公式 i+3*j == n (其中 0<= i <=2原创 2017-08-11 14:57:25 · 676 阅读 · 0 评论 -
A - Fibonacci
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …An alternative fo原创 2017-08-11 15:47:17 · 680 阅读 · 0 评论 -
E - M斐波那契数列 (费马小定理 + 二分快速幂 + 矩阵快速幂)
题解F(0)=a,F(1)=b F(n)=F(n−1)F(n−2) ⇒F(n)=F(n−2)2F(n−3) ⇒F(n)=F(n−3)3F(n−4)2 ⇒F(n)=F(n−4)5F(n−5)3 … ⇒F(n)=F(1)f(n)F(0)f(n−1) ⇒F(n)=bf(n)af(n−1) f(n)正是斐波那契数列。 矩阵快速幂可以求出f(n),f(n−1)的值。 然后快速幂计算bf(n原创 2017-08-15 16:48:15 · 289 阅读 · 0 评论