整数快速乘法/快速幂+矩阵快速幂

快速乘法通常有两类应用:一、整数的运算,计算(a*b) mod c 二、矩阵快速乘法
一、整数运算:(快速乘法、快速幂)

先说明一下基本的数学常识:

(a*b) mod c == ( (a mod c) * (b mod c) ) mod c //这最后一个mod c 是为了保证结果不超过c

对于2进制,2n可用1后接n个0来表示、对于8进制,可用公式 i+3*j == n (其中 0<= i <=2 ),对于16进制,可用 i+4*j==n(0 <= i <=3)来推算,表达形式为2i 后接 j 个0。

接下来让我们尽可能简单的描述快速乘法的思想:
a*b

快速乘法的基本思想 ,是二进制和乘法分配律的结合,(不由得想起浮点数不满足结合律,严重吐槽!!!╮(╯-╰)╭),比如说,13 ==(1101)2 ,4*13等于4*(1101)2 ,用分配律展开得到4*13 == 4*(1000+100+1)2,我们不难观察出,快速幂可以通过判断当前的位(bit)是1还是0,推断出是否需要做求和操作,每次移动到下一位(bit)时,就对ans进行*2操作,等待是否求和。由于除以2和位移操作是等效的,因此这也可以看作是二分思想的应用,这种算法将b进行二分从而减少了不必要的运算,时间复杂度是log(n)。

a^b

快速幂其实可以看作是快速乘法的特例,在快速幂中,我们不再对ans进行2操作,因为在a^b中b的意义已经从乘数变成了指数,但是我们可以仍然把b写成二进制,举例说明:此时,我们将4*13改为4^13,13=(1101)2 ,二进制13写开我们得到(1000+100+1),注意,这里的所有二进制是指数,指数的相加意味着底数相乘,因此有4^13 == 48 * 44 * 41。再注意到指数之间的2倍关系,我们就可以用很少的几个变量,完成这一算法。这样,我们就将原本用循环需要O(n)的算法,改进为O(logN)的算法。

按照惯例,给出尽可能简洁高效的代码实现 (以下所有int都可用long long 代替)

首先,给出快速乘法的实现:

int qmul(int a, int b){//根据数据范围可选择long long 
    int ans=0;
    while(b){
        if(b&1)
            ans+=a;//按位与完成位数为1的判断
        b>>=1;
        a<<=1;//位运算代替/2和*2
    }
    return ans;
}

快速乘法取模:

int qmul_mod(int a, int b,int mod){//根据数据范围可选择long long 
    int ans=0;
    while(b){
        if((b&1)
            ans=(ans+a)%mod;//这里需要b%=mod 以及a%=mod
        b>>=1;
        a<<=1;//位运算代替/2和*2
    }
    return ans;// 
}

接下来是快速幂的实现:

//快速幂 a^n 
int qpow(int a, int n){//根据数据范围可选择long long 
    if(a==0)return 0;//这是个坑,校赛被坑过,很多网上的实现都没写这一点
    int ans=1;
    while(n){
        if(n&1)
            ans*=x;//和快速乘法的区别
    x*=x;//区别,同上
        n>>=1;

    }
    return ans;
}

以及含有取模的快速幂:


int qpow_mod(int a, int n,int mode){//根据数据范围可选择long long 
    if(a==0)
        return 0;//这是个坑,校赛被坑过,很多网上的实现都没写这一点
    int ans=1;
    while(n){
        if(n&1)
            ans=(ans*x)%mod;
        x=(x*x)%mod;
        n>>=1;

    }
    return ans;
}

矩阵乘法:

int c[N][N];  
void multi(int a[][N],int b[][N],int n)  
{  
    memset(c,0,sizeof c);  
    for(int i=1;i<=n;i++)  
        for(int k=1;k<=n;k++)  
        for(int j=1;j<=n;j++)  
        c[i][j]+=a[i][k]*b[k][j];  
} 

矩阵快速幂:
就是算A^n;方法很简单,把快速幂算法中的乘法改成矩阵的乘法就可以了

    const int N=10;  
    int tmp[N][N];  
    void multi(int a[][N],int b[][N],int n)  
    {  
        memset(tmp,0,sizeof tmp);  
        for(int i=1;i<=n;i++)  
            for(int j=1;j<=n;j++)  
            for(int k=1;k<=n;k++)  
            tmp[i][j]+=a[i][k]*b[k][j];  
        for(int i=1;i<=n;i++)  
            for(int j=1;j<=n;j++)  
            a[i][j]=tmp[i][j];  
    }  
    int res[N][N];  
    void Pow(int a[][N],int n)  
    {  
        memset(res,0,sizeof res);  
        for(int i=1;i<=n;i++) res[i][i]=1;  
        while(n)  
        {  
            if(n&1)  
                multi(res,a,n);//res=res*a;复制直接在multi里面实现了;  
            multi(a,a,n);//a=a*a  
            n>>=1;  
        }  
    }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值